Viral Membrane Proteins: Structure, Function, and Drug Design / Edition 1

Viral Membrane Proteins: Structure, Function, and Drug Design / Edition 1

by Wolfgang B. Fischer
ISBN-10:
1441934537
ISBN-13:
9781441934536
Pub. Date:
12/15/2010
Publisher:
Springer US
ISBN-10:
1441934537
ISBN-13:
9781441934536
Pub. Date:
12/15/2010
Publisher:
Springer US
Viral Membrane Proteins: Structure, Function, and Drug Design / Edition 1

Viral Membrane Proteins: Structure, Function, and Drug Design / Edition 1

by Wolfgang B. Fischer
$169.99
Current price is , Original price is $169.99. You
$169.99 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Overview

In Viral Membrane Proteins: Structure, Function, and Drug Design, Wolfgang Fischer summarizes the current structural and functional knowledge of membrane proteins encoded by viruses. In addition, contributors to the book address questions about proteins as potential drug targets. The range of information covered includes signal proteins, ion channels, and fusion proteins.

This book has a place in the libraries of researchers and scientists in a wide array of fields, including protein chemistry, molecular biophysics, pharmaceutical science and research, bioanotechnology, molecular biology, and biochemistry.


Product Details

ISBN-13: 9781441934536
Publisher: Springer US
Publication date: 12/15/2010
Series: Protein Reviews , #1
Edition description: Softcover reprint of hardcover 1st ed. 2005
Pages: 292
Product dimensions: 6.10(w) x 9.25(h) x 0.03(d)

Table of Contents

Membrane Proteins from Plant Viruses.- Membrane Proteins in Plant Viruses.- Structure and Function of a Viral Encoded K+ Channel.- Fusion Proteins.- HIV gp41: A Viral Membrane Fusion Machine.- Diversity of Coronavirus Spikes: Relationship to Pathogen Entry and Dissemination.- Aspects of the Fusogenic Activity of Influenza Hemagglutinin Peptides by Molecular Dynamics Simulations.- Viral Ion Channels/viroporins.- Viral Proteins that Enhance Membrane Permeability.- FTIR Studies of Viral Ion Channels.- The M2 Proteins of Influenza A and B Viruses are Single-Pass Proton Channels.- Influenza A Virus M2 Protein: Proton Selectivity of the Ion Channel, Cytotoxicity, and a Hypothesis on Peripheral Raft Association and Virus Budding.- Computer Simulations of Proton Transport Through the M2 Channel of the Influenza A Virus.- Structure and Function of Vpu from HIV-1.- Structure, Phosphorylation, and Biological Function of the HIV-1 Specific Virus Protein U (Vpu).- Solid-State NMR Investigations of Vpu Structural Domains in Oriented Phospholipid Bilayers: Interactions and Alignment.- Defining Drug Interactions with the Viral Membrane Protein Vpu from HIV-1.- Virus Ion Channels Formed by Vpu of HIV-1, the 6K Protein of Alphaviruses and NB of Influenza B Virus.- The Alphavirus 6K Protein.- Membrane-Spanning/Membrane Associated.- The Structure, Function, and Inhibition of Influenza Virus Neuraminidase.- Interaction of HIV-1 Nef with Human CD4 and Lck.
From the B&N Reads Blog

Customer Reviews