Noise Temperature Theory and Applications for Deep Space Communications Antenna Systems

Noise Temperature Theory and Applications for Deep Space Communications Antenna Systems

by Tom Y. Otoshi
ISBN-10:
1596933771
ISBN-13:
9781596933774
Pub. Date:
06/28/2008
Publisher:
Artech House, Incorporated
ISBN-10:
1596933771
ISBN-13:
9781596933774
Pub. Date:
06/28/2008
Publisher:
Artech House, Incorporated
Noise Temperature Theory and Applications for Deep Space Communications Antenna Systems

Noise Temperature Theory and Applications for Deep Space Communications Antenna Systems

by Tom Y. Otoshi

Hardcover

$160.0
Current price is , Original price is $160.0. You
$160.00 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Overview

This unique book shows how to analyze, design, measure, and accurately evaluate the many detailed elements comprising noise temperature. These are the techniques developed for NASA-JPL's Deep Space Network — presented here for the first time.


Product Details

ISBN-13: 9781596933774
Publisher: Artech House, Incorporated
Publication date: 06/28/2008
Series: Artech House Antennas and Propagation Library
Pages: 300
Product dimensions: 7.10(w) x 10.00(h) x 0.90(d)

About the Author

Tom Y. Otoshi

Table of Contents


Foreword     xi
Preface     xiii
Acknowledgments     xv
Introductory Topics     1
Antenna Noise Temperature as Functions of Pointing Angles     1
Zenith Formula     1
Sky Brightness Temperature     6
Ground Brightness Temperature     11
Formula for Nonzenith Pointing Angles     17
Tipping Curve Applications     22
Cosmic Background Noise Temperature     37
Introduction     37
Calibration Equation     37
Experimental Results     39
Commentary     39
Portable Microwave Test Packages     40
Introduction     40
Test-Package Descriptions     41
Test Configurations and Test Procedure     42
Noise-Temperature Measurement Method     44
Noise-Temperature Measurement Results     47
Concluding Remarks     50
Dichroic Plate in a Beam-Waveguide Antenna System     50
Introduction     50
Background     51
Analytical Method     54
Experimental Work     62
Conclusions     66
References     66
SelectedBibliography     69
Reflector Surfaces     71
Perforated Panels     71
Introduction     71
Old Calculation Method     73
New Calculation Method     74
Perforated-Plate and Perforated-Panel Geometries     80
Results     82
Concluding Remarks     86
Solid Panels     88
Basic Noise Temperature Relationships     88
Dependence on Polarization and Incidence Angle     93
Electrical Conductivity of Various Metals     99
Painted Panels     108
Background on Paint Study     108
Background on DSN Antennas     108
Excess Noise Temperature and Added Gain Loss     110
Results and Performance Characterizations     113
Conclusions     130
Wet Panels     131
Theoretical Studies     131
Experimental Studies     132
References     134
Noise Temperature Experiments     137
Horns of Different Gains at f1     137
Introduction     137
Analytical Procedure and Results     137
Experimental Work     144
Determination of Strut Contribution      147
Conclusions     151
Bird Net Cover for BWG Antennas     152
Introduction     152
Description of the Net Cover     152
Test Results     153
Concluding Remarks     155
G/T Improvement Task     156
Introduction     156
Test Configurations and Test Results     157
Summary and Recommendations     171
Measured Sun Noise Temperature at 32 GHz     172
Introduction     172
Gain Reduction Methods     173
Measurement and Data Reduction Method     177
Experimental Results     180
Concluding Remarks     185
References     186
Selected Bibliography     187
Mismatch Error Analyses     189
Antenna System Noise Temperature Calibration Mismatch Errors     189
Introduction     189
Review     190
Antenna System Noise Temperature Measurements     196
Antenna Efficiency Measurements     205
Applications     210
Concluding Remarks     221
Equivalent Source Noise Temperature at Output of Cascaded Lossy Networks     222
Matched Case      222
Mismatched Case     224
Effective Input Noise Temperature at Input of Cascaded Lossy Networks     229
Matched Case     229
General Mismatched Case     231
References     233
Network Analysis Topics     235
Two-Port Network Containing Two Internal Paths     235
Introduction and Background     235
Dissipative Power Ratios of Four-, Three-, and Two-Port Networks     235
Power Flow (PF) Method     239
Voltage Wave (VW) Method     242
Sample Cases     246
Example of the Effects of a Mismatched Component in Path 1     249
Conclusions     252
Three-Port Network with Two External Noise Sources     252
Introduction     252
Properties of an Ideal Four-Port Coupler     253
Two External Noise Source Outputs Travel Common Paths     254
Two External Noise Source Outputs Travel Individual Paths     262
Conclusions     265
References     266
Useful Formulas for Noise Temperature Applications     269
Formulas Associated with Solid Metal Reflectors     269
Conductivity of Metals     269
Noise Temperature of a Solid Metallic Sheet      270
Formulas Associated with Metal Reflectors with Holes     271
Perforated Plates with Round Holes     271
Wire Grids     274
Other Useful Formulas     276
Relationship of Insertion Loss to Noise Temperature     276
Relationship of Return Loss to Reflection Coefficient and VSWR     278
References     279
About the Author     281
Index     283
From the B&N Reads Blog

Customer Reviews