Nanoscale Spectroscopy and Its Applications to Semiconductor Research / Edition 1

Nanoscale Spectroscopy and Its Applications to Semiconductor Research / Edition 1

ISBN-10:
3540433120
ISBN-13:
9783540433125
Pub. Date:
09/17/2002
Publisher:
Springer Berlin Heidelberg
ISBN-10:
3540433120
ISBN-13:
9783540433125
Pub. Date:
09/17/2002
Publisher:
Springer Berlin Heidelberg
Nanoscale Spectroscopy and Its Applications to Semiconductor Research / Edition 1

Nanoscale Spectroscopy and Its Applications to Semiconductor Research / Edition 1

Hardcover

$109.99
Current price is , Original price is $109.99. You
$109.99 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Overview

Fabrication technologies for nanostructured devices have been developed recently, and the electrical and optical properties of such nanostructures are a subject of advanced research.

This book describes the different approaches to spectroscopic microscopy, i.e., Electron Beam Probe Spectroscopy, Spectroscopic Photoelectron Microscopy, and Scanning Probe Spectroscopy. It will be useful as a compact source of reference for the experienced reseracher, taking into account at the same time the needs of postgraduate students and nonspecialist researchers by using a tutorial approach throughout.


Product Details

ISBN-13: 9783540433125
Publisher: Springer Berlin Heidelberg
Publication date: 09/17/2002
Series: Lecture Notes in Physics , #588
Edition description: 2002
Pages: 308
Product dimensions: 6.10(w) x 9.25(h) x 0.03(d)

Table of Contents

Spectro-microscopy by TEM-SEM.- Determination of Nanosize Particle Distribution by Low Frequency Raman Scattering: Comparison to Electron Microscopy.- Development of Cathodoluminescence (CL) for Semiconductor Research, Part I: TEM-CL Study of Microstructures and Defects in Semiconductor Epilayers.- Development of CL for Semiconductor Research, Part II: Cathodoluminescence Study of Semiconductor Nanoparticles and Nanostructures Using Low-Electron-Beam Energies.- Development of CL for Semiconductor Research, Part III: Study of Degradation Mechanisms in Compound Semiconductor-Based Devices by SEM-CL.- Microcharacterization of Conformal GaAs on Si Layers by Spatially Resolved Optical Techniques.- Strain Analysis in Submicron Electron Devices by Convergent Beam Electron Diffraction.- Synchrotron Radiation X-ray Microscopy Based on Zone Plate Optics.- Long-Term Oxidation Behaviour of Lead Sulfide Surfaces.- Cross-Sectional Photoemission Spectromicroscopy of Semiconductor Heterostructures.- Surface Imaging Using Electrons Excited by Metastable-Atom Impacts.- Application of Photoemission Electron Microscopy to Magnetic Domain Imaging.- Photoelectron Spectroscopy with a Photoemission Electron Microscope.- X-ray Photoemission and Low-Energy Electron Microscope.- Application of Imaging-Type Photoelectron Spectromicroscopy to Solid-State Physics.- Scanning Near-Field Optical Spectroscopy of Quantum-Confined Semiconductor Nanostructures.- Novel Tuning Fork Sensor for Low-Temperature Near-Field Spectroscopy.- Manipulating, Reacting, and Constructing Single Molecules with a Scanning Tunneling Microscope Tip.- Electron-Beam-Induced Decomposition of SiO2 Overlay on Si in STM Nanolithography.- Direct Imaging of InGaAs Quantum Dot States by Scanning Tunneling Spectroscopy.- Growth and Characterization of Ge Nanostructures on Si(111).- Imaging of Zero-Dimensional States in Semiconductor Nanostructures Using Scanning Tunneling Microscopy.- Electronic-Excitation-Induced Enhancement in Metallicity on HOPG and Si Surfaces: In Situ STM/STS Studies.- Electronic Properties of Polycrystalline and Amorphous WO3 Investigated with Scanning Tunnelling Spectroscopy.- Probing of Electronic Transitions with Atomic-Scale Spatial Resolution in Semiconductor Quantum Well Structures.- Scanning Tunneling Microscope-Induced Light Emission from Nanoscale Structures.
From the B&N Reads Blog

Customer Reviews