Gradient-Index Optics: Fundamentals and Applications / Edition 1

Gradient-Index Optics: Fundamentals and Applications / Edition 1

ISBN-10:
3540421254
ISBN-13:
9783540421252
Pub. Date:
03/05/2002
Publisher:
Springer Berlin Heidelberg
ISBN-10:
3540421254
ISBN-13:
9783540421252
Pub. Date:
03/05/2002
Publisher:
Springer Berlin Heidelberg
Gradient-Index Optics: Fundamentals and Applications / Edition 1

Gradient-Index Optics: Fundamentals and Applications / Edition 1

$109.99
Current price is , Original price is $109.99. You
$109.99 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Overview

This book provides a comprehensive and thorough treatment on fundamentals and applications of light propagation through inhomogeneous media. The authors present a description of the phenomena, components and technology used in GRIN Optics, and analyze various applications.


Product Details

ISBN-13: 9783540421252
Publisher: Springer Berlin Heidelberg
Publication date: 03/05/2002
Edition description: 2002
Pages: 241
Product dimensions: 6.10(w) x 9.25(h) x 0.24(d)

Table of Contents

1 Light Propagation in GRIN Media.- 1.1 Introduction.- 1.2 Vector Wave Equations.- 1.3 Scalar Wave Equation.- 1.4 Parabolic Wave Equation.- 1.5 Ray Optics: Axial and Field Rays.- 2 Imaging and Transforming Transmission Through GRIN Media.- 2.1 Introduction.- 2.2 The Kernel Function.- 2.3 Imaging and Fourier Transforming Through GRIN Media.- 2.4 Fractional Fourier Transforming in GRIN Media.- 2.5 Modal Representation of the Kernel.- 3 GRIN Lenses for Uniform Illumination.- 3.1 Introduction.- 3.2 Transmittance Function of a GRIN Lens for Uniform Illumination.- 3.3 GRIN Lens Law: Imaging and Fourier Transforming by GRIN Lens.- 3.4 Geometrical Optics of GRIN Lenses.- 3.5 Effective Radius, Numerical Aperture, Aperture Stop, and Pupils.- 3.6 Diffraction-Limited Propagation of Light in a GRIN lens.- 3.7 Effect of the Aperture on Image and Fourier Transform Formation.- 4 GRIN Lenses for Gaussian Illumination.- 4.1 Introduction.- 4.2 Propagation of Gaussian Beams in a GRIN Lens.- 4.3 GRIN Lens Law: Image and Focal Shifts.- 4.4 Effective Aperture.- 5 GRIN Media with Loss or Gain.- 5.1 Introduction.- 5.2 Active GRIN Materials: Complex Refractive Index.- 5.3 The Kernel Function.- 5.4 Focal Distance and Focal Shift for Uniform Illumination.- 5.5 Gaussian Illumination in an Active GRIN Medium: Beam Parameters.- 5.6 Transformation of a Gaussian Beam into a Uniform Beam.- 6 Planar GRIN Media with Hyperbolic Secant Refractive Index Profile.- 6.1 Introduction.- 6.2 Ray Equation and ABCD Law.- 6.3 Focusing and Collimation Properties.- 6.4 Numerical Aperture: On-Axis and Off-Axis Coupling.- 6.5 Mode Propagation.- 6.6 The Kernel Function.- 6.7 Diffraction-Free and Diffraction-Limited Propagation of Light.- 7 The Talbot Effect in GRIN Media.- 7.1 Introduction.- 7.2 Light Propagation and Imaging Condition.- 7.3 The Integer Talbot Effect.- 7.4 Self-Image Distances.- 7.5 Fractional Talbot Effect: Unit Cell.- 7.6 Effect of Off-Axis Source and Finite Object Dimension on Self-Images.- 8 GRIN Crystalline Lens.- 8.1 Introduction.- 8.2 The Optical Structure of the Human Eye.- 8.3 The GRIN Model of the Crystalline Lens.- 8.4 The Gradient Parameter: Axial and Field Rays in the Crystalline Lens.- 8.5 Refractive Power and Cardinal Points of the Crystalline Lens.- 9 Optical Connections by GRIN Lenses.- 9.1 Introduction.- 9.2 GRIN Fiber Lens.- 9.3 Anamorphic Selfoc Lens.- 9.4 Tapered GRIN Lens.- 9.5 Selfoc Lens.- References.
From the B&N Reads Blog

Customer Reviews