Electron-Gated Ion Channels: With Amplification by NH3 Inversion Resonance

Electron-Gated Ion Channels: With Amplification by NH3 Inversion Resonance

by Wilson P. Ralston
ISBN-10:
1891121413
ISBN-13:
9781891121418
Pub. Date:
06/30/2005
Publisher:
The Institution of Engineering and Technology
ISBN-10:
1891121413
ISBN-13:
9781891121418
Pub. Date:
06/30/2005
Publisher:
The Institution of Engineering and Technology
Electron-Gated Ion Channels: With Amplification by NH3 Inversion Resonance

Electron-Gated Ion Channels: With Amplification by NH3 Inversion Resonance

by Wilson P. Ralston

Hardcover

$125.0
Current price is , Original price is $125.0. You
$125.00 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Overview

Understanding ion channel gating has been a goal of researchers since Hodgkin and Huxley's classic publication in 1952, but the gating mechanism has remained elusive. In this book it is shown how electrons can control gating. Introducing the electron as a gating agent requires amplification, but until now there has been no appropriate mechanism for amplification.

It was discovered that NH3 groups, at the end of arginine and lysine side chains, act as amplifiers for electron tunneling. The amplification is about 25-fold, due to the inversion of NH3. The inversion frequency for NH3 attached to the side chain was calculated from an electron-gating model, calibrated to the Hodgkin-Huxley model. It was also determined experimentally in Blue Fluorescent Protein, using a new microwave spectroscopy technique developed specifically for this purpose. The inversion frequency of NH3 in the gas phase occurs at about 24 GHz and is used by the ammonia clock and for amplification in the ammonia maser. This frequency, reduced by the attachment of NH3 to the side chain, is the basis for amplification of electron tunneling at arginine and lysine sites. Detailed models for electron gating in sodium and potassium ion channels are described and an electron-gating model for calcium oscillators is presented.

The book is a documentation of the author's research and is oriented towards research workers in the biological sciences. The new quantum-mechanical approach to ion channel gating elucidates mechanisms important to cellular function and signaling.


Product Details

ISBN-13: 9781891121418
Publisher: The Institution of Engineering and Technology
Publication date: 06/30/2005
Series: Materials, Circuits and Devices
Pages: 190
Product dimensions: 6.00(w) x 9.00(h) x (d)

About the Author

Wilson P. Ralston

Table of Contents

  • Part I: Theory/ Electron-Gated Ion Channels
  • Chapter 1: Introduction
  • Chapter 2: Developing a Model
  • Chapter 3: The Setcap Model
  • Chapter 4: Amplified Electron Tunneling and The Inverted Region
  • Chapter 5: Gating and Distortion Factors
  • Chapter 6: Characterization and Validation
  • Chapter 7: Flux Gating in Sodium and Potassium Channels
  • Chapter 8: Far Sites, Near Sites and Back Sites
  • Chapter 9: Electron-Gated K+ Channels
  • Part II: Experimental/ Microwave Investigation
  • Chapter 10: Microwave Thermal Fluorescence Spectroscopy
  • Appendix
From the B&N Reads Blog

Customer Reviews