Wastewater Treatment Reactors: Microbial Community Structure

Wastewater Treatment Reactors: Microbial Community Structure analyzes microbial community structure in relation to changes in physico-chemical parameters, the gene content (metagenome) or gene expression (metatranscriptome) of microbial communities in relation to changes in physico-chemical parameters, physiological aspects of microbial communities, enrichment cultures or pure cultures of key species in relation to changes in physico-chemical parameters, and modeling of potential consequences of changes in microbial community structure or function for higher trophic levels in a given habitat.

As several studies have been carried out to understand bulking phenomena and the importance of environmental factors on sludge settling characteristics, which are thought to be strongly influenced by flocculation, sludge bulking, foaming and rising, this book is an ideal resource on the topics covered.

  • Presents the state-of-the-art techniques and applications of omics tools in wastewater treatment reactors (WWTRs)
  • Describes both theoretical and practical knowledge surrounding the fundamental roles of microorganisms in WWTRs
  • Points out the reuse of treated wastewater through emerging technologies
  • Covers the economics of wastewater treatment and the development of suitable alternatives in terms of performance and cost effectiveness
  • Discusses cutting-edge molecular biological tools
  • Gives in-depth knowledge to study microbial community structure and function in wastewater treatment reactors
1137884196
Wastewater Treatment Reactors: Microbial Community Structure

Wastewater Treatment Reactors: Microbial Community Structure analyzes microbial community structure in relation to changes in physico-chemical parameters, the gene content (metagenome) or gene expression (metatranscriptome) of microbial communities in relation to changes in physico-chemical parameters, physiological aspects of microbial communities, enrichment cultures or pure cultures of key species in relation to changes in physico-chemical parameters, and modeling of potential consequences of changes in microbial community structure or function for higher trophic levels in a given habitat.

As several studies have been carried out to understand bulking phenomena and the importance of environmental factors on sludge settling characteristics, which are thought to be strongly influenced by flocculation, sludge bulking, foaming and rising, this book is an ideal resource on the topics covered.

  • Presents the state-of-the-art techniques and applications of omics tools in wastewater treatment reactors (WWTRs)
  • Describes both theoretical and practical knowledge surrounding the fundamental roles of microorganisms in WWTRs
  • Points out the reuse of treated wastewater through emerging technologies
  • Covers the economics of wastewater treatment and the development of suitable alternatives in terms of performance and cost effectiveness
  • Discusses cutting-edge molecular biological tools
  • Gives in-depth knowledge to study microbial community structure and function in wastewater treatment reactors
172.99 In Stock
Wastewater Treatment Reactors: Microbial Community Structure

Wastewater Treatment Reactors: Microbial Community Structure

Wastewater Treatment Reactors: Microbial Community Structure

Wastewater Treatment Reactors: Microbial Community Structure

eBook

$172.99  $230.00 Save 25% Current price is $172.99, Original price is $230. You Save 25%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Wastewater Treatment Reactors: Microbial Community Structure analyzes microbial community structure in relation to changes in physico-chemical parameters, the gene content (metagenome) or gene expression (metatranscriptome) of microbial communities in relation to changes in physico-chemical parameters, physiological aspects of microbial communities, enrichment cultures or pure cultures of key species in relation to changes in physico-chemical parameters, and modeling of potential consequences of changes in microbial community structure or function for higher trophic levels in a given habitat.

As several studies have been carried out to understand bulking phenomena and the importance of environmental factors on sludge settling characteristics, which are thought to be strongly influenced by flocculation, sludge bulking, foaming and rising, this book is an ideal resource on the topics covered.

  • Presents the state-of-the-art techniques and applications of omics tools in wastewater treatment reactors (WWTRs)
  • Describes both theoretical and practical knowledge surrounding the fundamental roles of microorganisms in WWTRs
  • Points out the reuse of treated wastewater through emerging technologies
  • Covers the economics of wastewater treatment and the development of suitable alternatives in terms of performance and cost effectiveness
  • Discusses cutting-edge molecular biological tools
  • Gives in-depth knowledge to study microbial community structure and function in wastewater treatment reactors

Product Details

ISBN-13: 9780128242445
Publisher: Elsevier Science
Publication date: 05/12/2021
Sold by: Barnes & Noble
Format: eBook
Pages: 644
File size: 8 MB

About the Author

Dr. Maulin P. Shah is an active researcher and scientific writer in his field for over 20 years. He received a B.Sc. degree (1999) in Microbiology from Gujarat University, Godhra (Gujarat), India. He also earned his Ph.D. degree (2005) in Environmental Microbiology from Sardar Patel University, Vallabh Vidyanagar (Gujarat) India. His research interests include Biological Wastewater Treatment, Environmental Microbiology, Biodegradation, Bioremediation,&Phytoremediation of Environmental Pollutants from Industrial Wastewaters. He has published more than 250 research papers in national and international journals of repute on various aspects of microbial biodegradation and bioremediation of environmental pollutants. He is the editor of 200 books of international repute (Elsevier, RSC, Nova Sciences, De Gruyter, Springer, Wiley, IOP and CRC Press).


Susana Rodríguez-Couto (female) got her B.Sc. and M.Sc. in Chemistry (Industrial Chemistry) from the University of Santiago de Compostela in 1992 and her Ph.D. in Chemistry in 1999 from the University of Vigo, obtaining the maximal grade (magna cum laude) and, in addition, she was awarded with the Extraordinary Prize for Doctoral Thesis in Chemistry. She worked as an Associate Professor and an Isidro Parga Pondal Senior Researcher at the University of Vigo (2000-2004), as a Ramón y Cajal Senior Researcher at Rovira i Virgili University (2004-2008) and as an Ikerbasque Research Professor (2009-2019). She has also worked as an Invited Researcher at the Institute from Environmental Biotechnology, Graz University of Technology (Austria) and at the Department of Biological Engineering, University of Minho (Portugal). In 2008, she received the I3 Professor from the Spanish Ministry of Science and Education to the recognition of an outstanding research activity. In March 2021 she is joining LUT School of Engineering Science at Mikkeli, Finland, as a Full Professor in biological water treatment. She has published more than 140 articles in highly reputed international journals (h index 42). She is editor of several journals (3Biotech, Frontiers) and 14 Elsevier books.

Table of Contents

1. Strategic approach for characterization of bacterial community in enhanced biological phosphate removal process

2. Removal of pollutants from wastewater via biological method and shift in microbial community profile during treatment process

3. Nitrogen removal bacterial communities characteristics and dynamics at lab scale reactors

4. Role of the microbial community in the anaerobic digester for biomethane production

5. Microbial diversity, interactions and biodegradation of hazardous textile wastewater using biological consortium technology

6. An overview of theoretical and experimental approach to study environmental microflora

7. Microbial diversity, interactions and biodegradation of organic and inorganic contaminants

8. Metagenomics- A field revealing the secrets into microbial world of waste water treatment plants.

9. Metagenomics: a powerful lens viewing the microbial world

10. Environmental Parameters Affecting Anaerobic Microbial Community

11. Molecular techniques used to identify perfluorooctanoic acid degrading bacteria/ microbes and their applications in wastewater treatment reactor/plant

12. Enhanced biological phosphate removal process for wastewater treatment: a sustainable approach

13. Modelling microbial communities: Consensual among experimentalist and theorist

14. Metagenomics: a powerful lens viewing the microbial world

15. Microbial diversity, interactions and Biodegradation/Biotransformation of organic and inorganic contaminants

16. Microbial community diversity in a waste water treatment plant

17. Molecular Biology Techniques for the Identification of Microbial Community in Waste- Water Treatment Reactors

18. Aerobic sludge granulation and enhanced dicamba removal efficiency in the presence of AQS redox mediator in a lab scale anaerobic-aerobic treatment method

19. Unraveling microbial complexities via metagenomic approach: Expanding cross-talk for environment management&Prospecting

20. Metagenomics: A computational approach in emergence of novel applications

21. Microbial Community Analysis of Domestic Wastewater during Blackwater Treatment

22. Molecular Biological Techniques used in Environmental Engineering: Current prospects and challenges

23. Removal of Heavy Metals by Microbial Communities

24. A comprehensive insight into tetracycline resistant bacteria and antibiotic resistance genes in activated sludge using next-generation sequencing

25. Bacterial Community Structure, Composition and Their Role in Biological Wastewater Treatment Reactors Plants

What People are Saying About This

From the Publisher

Highlights the importance of molecular genomics and molecular biology techniques to sort out environmental pollution problems faced in wastewater treatment plants

From the B&N Reads Blog

Customer Reviews