Tissue Engineering and Wound Healing: A Short Case Study

This eBook aims to provide a summary of the guiding themes along with some simple methodologies in (i) Tissue engineering and regenerative medicine and (ii) factors that influence the re-epithelial and tissue regeneration in wound healing. Tissue engineering involves the application of biological and engineering principles to achieve the repair, regeneration or replacement of failing or damaged organs. This dissertation examines the role of the extracellular matrix proteins, collagen and fibronectin along with transforming growth factor ß-3 (TGF ß-3) in skin tissue engineering and wound repair. The biological mechanisms associated with the ‘taking of grafts’ and normal wound healing is examined. Experimental studies investigated the role of transforming growth factor ß-3 on cell behaviour in combination with extracellular matrix patterns of collagen and fibronectin. Differences in the cell behaviour ‘in vitro’ can be attributed to the interaction of different protein-specific integrins during cell-cell and cell-matrix attachment.
Detachment studies of protein treated surfaces and cells illustrated the variation in detachment times of collagen and fibronectin and TGF- β-3 treated culture flasks.
The use of skin substitutes is still not widespread and lacks a ‘one-step process’. Various short comings were identified such as high costs; susceptibility to infection and long lead times which all diminish the effectiveness of skin replacements.

Cell guidance and behaviour directly impact upon the healing mechanisms and scarring profiles in skin tissue. With a deeper understanding of Cellular communication, the immune system, wound repair, and current skin equivalents we can develop skin substitutes to better mimic native tissue and also optimise conditions for favourable wound closure and scar resolution.

1123955442
Tissue Engineering and Wound Healing: A Short Case Study

This eBook aims to provide a summary of the guiding themes along with some simple methodologies in (i) Tissue engineering and regenerative medicine and (ii) factors that influence the re-epithelial and tissue regeneration in wound healing. Tissue engineering involves the application of biological and engineering principles to achieve the repair, regeneration or replacement of failing or damaged organs. This dissertation examines the role of the extracellular matrix proteins, collagen and fibronectin along with transforming growth factor ß-3 (TGF ß-3) in skin tissue engineering and wound repair. The biological mechanisms associated with the ‘taking of grafts’ and normal wound healing is examined. Experimental studies investigated the role of transforming growth factor ß-3 on cell behaviour in combination with extracellular matrix patterns of collagen and fibronectin. Differences in the cell behaviour ‘in vitro’ can be attributed to the interaction of different protein-specific integrins during cell-cell and cell-matrix attachment.
Detachment studies of protein treated surfaces and cells illustrated the variation in detachment times of collagen and fibronectin and TGF- β-3 treated culture flasks.
The use of skin substitutes is still not widespread and lacks a ‘one-step process’. Various short comings were identified such as high costs; susceptibility to infection and long lead times which all diminish the effectiveness of skin replacements.

Cell guidance and behaviour directly impact upon the healing mechanisms and scarring profiles in skin tissue. With a deeper understanding of Cellular communication, the immune system, wound repair, and current skin equivalents we can develop skin substitutes to better mimic native tissue and also optimise conditions for favourable wound closure and scar resolution.

5.99 In Stock
Tissue Engineering and Wound Healing: A Short Case Study

Tissue Engineering and Wound Healing: A Short Case Study

by Emmet Tobin
Tissue Engineering and Wound Healing: A Short Case Study

Tissue Engineering and Wound Healing: A Short Case Study

by Emmet Tobin

eBook

$5.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers

LEND ME® See Details

Overview

This eBook aims to provide a summary of the guiding themes along with some simple methodologies in (i) Tissue engineering and regenerative medicine and (ii) factors that influence the re-epithelial and tissue regeneration in wound healing. Tissue engineering involves the application of biological and engineering principles to achieve the repair, regeneration or replacement of failing or damaged organs. This dissertation examines the role of the extracellular matrix proteins, collagen and fibronectin along with transforming growth factor ß-3 (TGF ß-3) in skin tissue engineering and wound repair. The biological mechanisms associated with the ‘taking of grafts’ and normal wound healing is examined. Experimental studies investigated the role of transforming growth factor ß-3 on cell behaviour in combination with extracellular matrix patterns of collagen and fibronectin. Differences in the cell behaviour ‘in vitro’ can be attributed to the interaction of different protein-specific integrins during cell-cell and cell-matrix attachment.
Detachment studies of protein treated surfaces and cells illustrated the variation in detachment times of collagen and fibronectin and TGF- β-3 treated culture flasks.
The use of skin substitutes is still not widespread and lacks a ‘one-step process’. Various short comings were identified such as high costs; susceptibility to infection and long lead times which all diminish the effectiveness of skin replacements.

Cell guidance and behaviour directly impact upon the healing mechanisms and scarring profiles in skin tissue. With a deeper understanding of Cellular communication, the immune system, wound repair, and current skin equivalents we can develop skin substitutes to better mimic native tissue and also optimise conditions for favourable wound closure and scar resolution.


Product Details

BN ID: 2940153084923
Publisher: Emmet Tobin
Publication date: 06/12/2016
Sold by: Smashwords
Format: eBook
File size: 699 KB

About the Author

A graduate of the University of Bradford, West Yorkshire and Waterford Institute of Technology. With over 10 years experience in both the Medical Device and Pharmaceutical Industries, I am extremely passionate about validation and endorsing its importance to the future growth of companies.

My professional experience includes working as a device, development, and validation engineer. I have worked extensively on projects including equipment FATs, commissioning and validation, new product development and production transfers. I effectively bring the requirements of Design, Regulatory, Quality, Validation and Production together to provide technical and robust solutions. My approach is ethical, quality based, hands-on, and thorough. Validation is my key skill with a sharp awareness of Time, Cost and Quality, while delivering new products to meet business and customer needs.

From the B&N Reads Blog

Customer Reviews