Thin-Film Organic Photonics: Molecular Layer Deposition and Applications

Among the many atomic/molecular assembling techniques used to develop artificial materials, molecular layer deposition (MLD) continues to receive special attention as the next-generation growth technique for organic thin-film materials used in photonics and electronics.

Thin-Film Organic Photonics: Molecular Layer Deposition and Applications describes how photonic/electronic properties of thin films can be improved through MLD, which enables precise control of atomic and molecular arrangements to construct a wire network that achieves "three-dimensional growth". MLD facilitates dot-by-dot—or molecule-by-molecule—growth of polymer and molecular wires, and that enhanced level of control creates numerous application possibilities.

Explores the wide range of MLD applications in solar energy and optics, as well as proposed uses in biomedical photonics

This book addresses the prospects for artificial materials with atomic/molecular-level tailored structures, especially those featuring MLD and conjugated polymers with multiple quantum dots (MQDs), or polymer MQDs. In particular, the author focuses on the application of artificial organic thin films to:

  • Photonics/electronics, particularly in optical interconnects used in computers
    Optical switching and solar energy conversion systems
  • Bio/ medical photonics, such as photodynamic therapy
  • Organic photonic materials, devices, and integration processes

With its clear and concise presentation, this book demonstrates exactly how MLD enables electron wavefunction control, thereby improving material performance and generating new photonic/electronic phenomena.

1127600536
Thin-Film Organic Photonics: Molecular Layer Deposition and Applications

Among the many atomic/molecular assembling techniques used to develop artificial materials, molecular layer deposition (MLD) continues to receive special attention as the next-generation growth technique for organic thin-film materials used in photonics and electronics.

Thin-Film Organic Photonics: Molecular Layer Deposition and Applications describes how photonic/electronic properties of thin films can be improved through MLD, which enables precise control of atomic and molecular arrangements to construct a wire network that achieves "three-dimensional growth". MLD facilitates dot-by-dot—or molecule-by-molecule—growth of polymer and molecular wires, and that enhanced level of control creates numerous application possibilities.

Explores the wide range of MLD applications in solar energy and optics, as well as proposed uses in biomedical photonics

This book addresses the prospects for artificial materials with atomic/molecular-level tailored structures, especially those featuring MLD and conjugated polymers with multiple quantum dots (MQDs), or polymer MQDs. In particular, the author focuses on the application of artificial organic thin films to:

  • Photonics/electronics, particularly in optical interconnects used in computers
    Optical switching and solar energy conversion systems
  • Bio/ medical photonics, such as photodynamic therapy
  • Organic photonic materials, devices, and integration processes

With its clear and concise presentation, this book demonstrates exactly how MLD enables electron wavefunction control, thereby improving material performance and generating new photonic/electronic phenomena.

75.49 In Stock
Thin-Film Organic Photonics: Molecular Layer Deposition and Applications

Thin-Film Organic Photonics: Molecular Layer Deposition and Applications

by Tetsuzo Yoshimura
Thin-Film Organic Photonics: Molecular Layer Deposition and Applications

Thin-Film Organic Photonics: Molecular Layer Deposition and Applications

by Tetsuzo Yoshimura

eBook

$75.49  $100.00 Save 25% Current price is $75.49, Original price is $100. You Save 25%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Among the many atomic/molecular assembling techniques used to develop artificial materials, molecular layer deposition (MLD) continues to receive special attention as the next-generation growth technique for organic thin-film materials used in photonics and electronics.

Thin-Film Organic Photonics: Molecular Layer Deposition and Applications describes how photonic/electronic properties of thin films can be improved through MLD, which enables precise control of atomic and molecular arrangements to construct a wire network that achieves "three-dimensional growth". MLD facilitates dot-by-dot—or molecule-by-molecule—growth of polymer and molecular wires, and that enhanced level of control creates numerous application possibilities.

Explores the wide range of MLD applications in solar energy and optics, as well as proposed uses in biomedical photonics

This book addresses the prospects for artificial materials with atomic/molecular-level tailored structures, especially those featuring MLD and conjugated polymers with multiple quantum dots (MQDs), or polymer MQDs. In particular, the author focuses on the application of artificial organic thin films to:

  • Photonics/electronics, particularly in optical interconnects used in computers
    Optical switching and solar energy conversion systems
  • Bio/ medical photonics, such as photodynamic therapy
  • Organic photonic materials, devices, and integration processes

With its clear and concise presentation, this book demonstrates exactly how MLD enables electron wavefunction control, thereby improving material performance and generating new photonic/electronic phenomena.


Product Details

ISBN-13: 9781351833851
Publisher: CRC Press
Publication date: 12/19/2017
Series: ISSN
Sold by: Barnes & Noble
Format: eBook
Pages: 370
File size: 30 MB
Note: This product may take a few minutes to download.

About the Author

Tetsuzo Yoshimura

Table of Contents

Atomic/Molecular Assembling Technologies. Fundamentals of Molecular Layer Deposition (MLD). Fabrication of Multiple Quantum Dots (MQDs) by MLD. Theoretical Predictions of Electro-Optic (EO) Effecs in Polymer Wires. Design of Integrated Optical Switches. Organic Photonic Materials, Devices and Integration Processes. Applications to Optical Interconnects and Optical Switching Systems. Applications to Solar Energy Conversion Systems. Proposed Applications to Bio/Medical Photonics.

What People are Saying About This

From the Publisher

… deals with interesting topics about a new technique for highly-ordered structures and high-performance optoelectronic properties of organic molecules... .
— Atsushi Kubono, Shizuoka University

From the B&N Reads Blog

Customer Reviews