Thermoacoustic Instability: A Complex Systems Perspective

This book systematically presents the consolidated findings of the phenomenon of self-organization observed during the onset of thermoacoustic instability using approaches from dynamical systems and complex systems theory. Over the last decade, several complex dynamical states beyond limit cycle oscillations such as quasiperiodicity, frequency-locking, period-n, chaos, strange non-chaos, and intermittency have been discovered in thermoacoustic systems operated in laminar and turbulent flow regimes. During the onset of thermoacoustic instability in turbulent systems, an ordered acoustic field and large coherent vortices emerge from the background of turbulent combustion. This emergence of order from disorder in both temporal and spatiotemporal dynamics is explored in the contexts of synchronization, pattern formation, collective interaction, multifractality, and complex networks.

For the past six decades, the spontaneous emergence of large amplitude, self-sustained, tonal oscillations in confined combustion systems, characterized as thermoacoustic instability, has remained one of the most challenging areas of research. The presence of such instabilities continues to hinder the development and deployment of high-performance combustion systems used in power generation and propulsion applications. Even with the advent of sophisticated measurement techniques to aid experimental investigations and vast improvements in computational power necessary to capture flow physics in high fidelity simulations, conventional reductionist approaches have not succeeded in explaining the plethora of dynamical behaviors and the associated complexities that arise in practical combustion systems. As a result, models and theories based on such approaches are limited in their application to mitigate or evade thermoacoustic instabilities, which continue to be among the biggest concerns for engine manufacturers today. This book helps to overcome these limitations by providing appropriate methodologies to deal with nonlinear thermoacoustic oscillations, and by developing control strategies that can mitigate and forewarn thermoacoustic instabilities.

The book is also beneficial to scientists and engineers studying the occurrence of several other instabilities, such as flow-induced vibrations, compressor surge, aeroacoustics and aeroelastic instabilities in diverse fluid-mechanical environments, to graduate students who intend to apply dynamical systems and complex systems approach to their areas of research, and to physicists who look for experimental applications of their theoretical findings on nonlinear and complex systems.

1139670934
Thermoacoustic Instability: A Complex Systems Perspective

This book systematically presents the consolidated findings of the phenomenon of self-organization observed during the onset of thermoacoustic instability using approaches from dynamical systems and complex systems theory. Over the last decade, several complex dynamical states beyond limit cycle oscillations such as quasiperiodicity, frequency-locking, period-n, chaos, strange non-chaos, and intermittency have been discovered in thermoacoustic systems operated in laminar and turbulent flow regimes. During the onset of thermoacoustic instability in turbulent systems, an ordered acoustic field and large coherent vortices emerge from the background of turbulent combustion. This emergence of order from disorder in both temporal and spatiotemporal dynamics is explored in the contexts of synchronization, pattern formation, collective interaction, multifractality, and complex networks.

For the past six decades, the spontaneous emergence of large amplitude, self-sustained, tonal oscillations in confined combustion systems, characterized as thermoacoustic instability, has remained one of the most challenging areas of research. The presence of such instabilities continues to hinder the development and deployment of high-performance combustion systems used in power generation and propulsion applications. Even with the advent of sophisticated measurement techniques to aid experimental investigations and vast improvements in computational power necessary to capture flow physics in high fidelity simulations, conventional reductionist approaches have not succeeded in explaining the plethora of dynamical behaviors and the associated complexities that arise in practical combustion systems. As a result, models and theories based on such approaches are limited in their application to mitigate or evade thermoacoustic instabilities, which continue to be among the biggest concerns for engine manufacturers today. This book helps to overcome these limitations by providing appropriate methodologies to deal with nonlinear thermoacoustic oscillations, and by developing control strategies that can mitigate and forewarn thermoacoustic instabilities.

The book is also beneficial to scientists and engineers studying the occurrence of several other instabilities, such as flow-induced vibrations, compressor surge, aeroacoustics and aeroelastic instabilities in diverse fluid-mechanical environments, to graduate students who intend to apply dynamical systems and complex systems approach to their areas of research, and to physicists who look for experimental applications of their theoretical findings on nonlinear and complex systems.

126.99 In Stock
Thermoacoustic Instability: A Complex Systems Perspective

Thermoacoustic Instability: A Complex Systems Perspective

Thermoacoustic Instability: A Complex Systems Perspective

Thermoacoustic Instability: A Complex Systems Perspective

eBook1st ed. 2021 (1st ed. 2021)

$126.99  $169.00 Save 25% Current price is $126.99, Original price is $169. You Save 25%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

This book systematically presents the consolidated findings of the phenomenon of self-organization observed during the onset of thermoacoustic instability using approaches from dynamical systems and complex systems theory. Over the last decade, several complex dynamical states beyond limit cycle oscillations such as quasiperiodicity, frequency-locking, period-n, chaos, strange non-chaos, and intermittency have been discovered in thermoacoustic systems operated in laminar and turbulent flow regimes. During the onset of thermoacoustic instability in turbulent systems, an ordered acoustic field and large coherent vortices emerge from the background of turbulent combustion. This emergence of order from disorder in both temporal and spatiotemporal dynamics is explored in the contexts of synchronization, pattern formation, collective interaction, multifractality, and complex networks.

For the past six decades, the spontaneous emergence of large amplitude, self-sustained, tonal oscillations in confined combustion systems, characterized as thermoacoustic instability, has remained one of the most challenging areas of research. The presence of such instabilities continues to hinder the development and deployment of high-performance combustion systems used in power generation and propulsion applications. Even with the advent of sophisticated measurement techniques to aid experimental investigations and vast improvements in computational power necessary to capture flow physics in high fidelity simulations, conventional reductionist approaches have not succeeded in explaining the plethora of dynamical behaviors and the associated complexities that arise in practical combustion systems. As a result, models and theories based on such approaches are limited in their application to mitigate or evade thermoacoustic instabilities, which continue to be among the biggest concerns for engine manufacturers today. This book helps to overcome these limitations by providing appropriate methodologies to deal with nonlinear thermoacoustic oscillations, and by developing control strategies that can mitigate and forewarn thermoacoustic instabilities.

The book is also beneficial to scientists and engineers studying the occurrence of several other instabilities, such as flow-induced vibrations, compressor surge, aeroacoustics and aeroelastic instabilities in diverse fluid-mechanical environments, to graduate students who intend to apply dynamical systems and complex systems approach to their areas of research, and to physicists who look for experimental applications of their theoretical findings on nonlinear and complex systems.


Product Details

ISBN-13: 9783030811358
Publisher: Springer-Verlag New York, LLC
Publication date: 12/14/2021
Series: Springer Series in Synergetics
Sold by: Barnes & Noble
Format: eBook
File size: 64 MB
Note: This product may take a few minutes to download.

About the Author

Prof. R. I. Sujith received his Ph. D. adorned with the “top graduate student in the college of engineering” award from Georgia Institute of Technology in 1994 under the supervision of Prof. Ben T Zinn. He is currently the D. Srinivasan Chair Professor at the Department of Aerospace Engineering at the Indian Institute of Technology Madras. He is a recipient of the prestigious Alexander von Humboldt Fellowship and the Hans Fischer Senior Fellowship of the Institute for Advanced Study (IAS) at the Technical University of Munich. Prof. Sujith was the founding Editor-in-Chief of the International Journal of Spray and Combustion Dynamics from 2009-2015, and is at present a member of the editorial advisory board of the interdisciplinary journal Chaos. He won the Young Engineer Award of the Indian National Academy of Engineering. He has also been awarded the Swarnajayanti Fellowship and the J. C. Bose Fellowship by the Department of Science and Technology India. He isa fellow of the Indian National Academy of Engineering and the Indian Academy of Sciences, and has been conferred the title of “TUM Ambassador” by the Technical University of Munich. Prof. Sujith currently works on the application of dynamical systems and complex systems theory to study and mitigate thermoacoustic instability.

Dr. Samadhan A. Pawar received his Ph. D. from the Indian Institute of Technology Madras under the supervision of Prof. R. I. Sujith and Prof. Mahesh V. Panchagnula. He was conferred the ‘Institute Research Award’ from IIT Madras (2018) in recognition of his doctoral research work on the application of synchronization theory to thermoacoustic systems. Dr. Pawar has also been awarded the ‘Young Scientist Award 2021’ by the International Society for Energy, Environment and Sustainability (ISEES) in view of his impressive contributions to the research field at a very young age. Currently, he is a Postdoctoral Fellow in Prof. Sujith’s lab at IIT Madras.His work highlights the maiden experimental and theoretical characterization of the onset of thermoacoustic instability and its control using dynamical systems theory and complex systems theory. 

Table of Contents

Introduction .- Introduction to Dynamical Systems Theory .- Bifurcation to Limit Cycle Oscillations in Laminar Thermoacoustic Systems.- Thermoacoustic Instability: Beyond Limit Cycle Oscillations.- Thermoacoustic Instability is Self-Organization in a Complex System .- Intermittency - A State Precedes Thermoacoustic Blowout in Turbulent Combustors .- Spatiotemporal Dynamics of Flow, Flame, and Acoustic Fields during the Onset of Thermoacoustic Instability .- Synchronization of Self-excited Acoustics and Turbulent Reacting Flow Dynamics .- Model for Intermittency Route to Thermoacoustic Instability .- Multifractal Analysis of a Turbulent Thermoacoustic System.- Complex Network Approach to Thermoacoustic Systems .- Early Warning and Mitigation Strategies for Thermoacoustic Instability .- Oscillatory Instabilities in Other Fluid Systems .- Summary and Perspective.
From the B&N Reads Blog

Customer Reviews