Theory of Nonlinear Lattices

Theory of Nonlinear Lattices

by Morikazu Toda
Theory of Nonlinear Lattices

Theory of Nonlinear Lattices

by Morikazu Toda

Paperback(Softcover reprint of the original 2nd ed. 1989)

$54.99 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Related collections and offers


Overview

Soliton theory, the theory of nonlinear waves in lattices composed of particles interacting by nonlinear forces, is treated rigorously in this book. The presentation is coherent and self-contained, starting with pioneering work and extending to the most recent advances in the field. Special attention is focused on exact methods of solution of nonlinear problems and on the exact mathematical treatment of nonlinear lattice vibrations. This new edition updates the material to take account of important new advances.

Product Details

ISBN-13: 9783540183273
Publisher: Springer Berlin Heidelberg
Publication date: 12/01/1988
Series: Springer Series in Solid-State Sciences , #20
Edition description: Softcover reprint of the original 2nd ed. 1989
Pages: 225
Product dimensions: 6.10(w) x 9.25(h) x 0.02(d)

Table of Contents

1. Introduction.- 1.1 The Fermi-Pasta-Ulam Problem.- 1.2 Hénon-Heiles Calculation.- 1.3 Discovery of Solitons.- 1.4 Dual Systems.- 2. The Lattice with Exponential Interaction.- 2.1 Finding of an Integrable Lattice.- 2.2 The Lattice with Exponential Interaction.- 2.3 Periodic Solutions.- 2.4 Solitary Waves.- 2.5 Two-Soliton Solutions.- 2.6 Hard-Sphere Limit.- 2.7 Continuum Approximation and Recurrence Time.- 2.8 Applications and Extensions.- 2.9 Poincaré Mapping.- 2.10 Conserved Quantities.- 3. The Spectrum and Construction of Solutions.- 3.1 Matrix Formalism.- 3.2 Infinite Lattice.- 3.3 Scattering and Bound States.- 3.4 The Gel’fand-Levitan Equation.- 3.5 The Initial Value Problem.- 3.6 Soliton Solutions.- 3.7 The Relationship Between the Conserved Quantities and the Transmission Coefficient.- 3.8 Extensions of the Equations of Motion and the Kac-Moerbeke System.- 3.9 The Bäcklund Transformation.- 3.10 A Finite Lattice.- 3.11 Continuum Approximation.- 4. Periodic Systems.- 4.1 Discrete Hill’s Equation.- 4.2 Auxiliary Spectrum.- 4.3 Relation Between—j (k) and—j (0).- 4.4 Related Integrals on the Riemann Surface.- 4.5 Solution to the Inverse Problem.- 4.6 Time Evolution.- 4.7 A Simple Example (A Cnoidal Wave).- 4.8 Periodic System of Three-Particles.- 5. Application of the Hamilton-Jacobi Theory.- 5.1 Canonically Conjugate Variables.- 5.2 Action Variables.- 6. Recent Advances in the Theory of Nonlinear Lattices.- 6.1 The KdV Equation as a Limit of the TL Equation.- 6.2 Interacting Soliton Equations.- 6.3 Integrability.- 6.4 Generalization of the TL Equation.- 6.5 Two-Dimensional TL.- 6.6 Bethe Ansatz.- 6.7 The Thermodynamic Limit.- 6.8 Hierarchy of Nonlinear Equations.- 6.9 Some Numerical Results.- Appendices.- Simplified Answers to Main Problems.- References.-List of Authors Cited in Text.
From the B&N Reads Blog

Customer Reviews