THEORETICAL STATISTICAL OPTICS
This monograph overviews classic and recent developments in theoretical statistical optics in connection with stationary and non-stationary (pulsed) optical source characterization and modeling, discusses various phenomena occurring with random light propagating in free space, on its interaction with optical systems, extended media and particulate collections. The text includes scalar, beam-like and general electromagnetic treatment of light. A brief statistical description of four fundamental experiments relating to random light: spatial and temporal field interference, intensity interferometry and phase conjugation, is also included in order to relate the analytical descriptions with practical observations.Rigorous mathematical methods for statistical manipulation of light sources useful for remote shaping of its various average properties, enhanced image resolution, optimized transmission in random media and for other applications are introduced. For illustration of efficient ways for manipulation of light polarization the generalized Stokes-Mueller calculus is applied for description of interaction of beam-like fields with classic and currently popular devices of polarization optics, including a spatial light modulator.Random light plays a special role in the image formation process. Three imaging modalities including the classic intensity-based system with structured source correlations, the polarization-based imaging system and the ghost interference approach are discussed in detail.Theoretical aspects of potential scattering of light from weakly scattering media are considered under a very broad range of assumptions: scalar/electromagnetic incident light, deterministic/random light/media, single/particulate media. Then, problems and methods in light characterization on interaction with extended, turbulent-like natural media, such as the Earth's atmosphere, oceans and soft bio-tissues that are currently widely used for communication, remote sensing and imaging purposes in these media, are provided.
"1138595553"
THEORETICAL STATISTICAL OPTICS
This monograph overviews classic and recent developments in theoretical statistical optics in connection with stationary and non-stationary (pulsed) optical source characterization and modeling, discusses various phenomena occurring with random light propagating in free space, on its interaction with optical systems, extended media and particulate collections. The text includes scalar, beam-like and general electromagnetic treatment of light. A brief statistical description of four fundamental experiments relating to random light: spatial and temporal field interference, intensity interferometry and phase conjugation, is also included in order to relate the analytical descriptions with practical observations.Rigorous mathematical methods for statistical manipulation of light sources useful for remote shaping of its various average properties, enhanced image resolution, optimized transmission in random media and for other applications are introduced. For illustration of efficient ways for manipulation of light polarization the generalized Stokes-Mueller calculus is applied for description of interaction of beam-like fields with classic and currently popular devices of polarization optics, including a spatial light modulator.Random light plays a special role in the image formation process. Three imaging modalities including the classic intensity-based system with structured source correlations, the polarization-based imaging system and the ghost interference approach are discussed in detail.Theoretical aspects of potential scattering of light from weakly scattering media are considered under a very broad range of assumptions: scalar/electromagnetic incident light, deterministic/random light/media, single/particulate media. Then, problems and methods in light characterization on interaction with extended, turbulent-like natural media, such as the Earth's atmosphere, oceans and soft bio-tissues that are currently widely used for communication, remote sensing and imaging purposes in these media, are provided.
64.99 In Stock
THEORETICAL STATISTICAL OPTICS

THEORETICAL STATISTICAL OPTICS

by Olga Korotkova
THEORETICAL STATISTICAL OPTICS

THEORETICAL STATISTICAL OPTICS

by Olga Korotkova

eBook

$64.99  $86.00 Save 24% Current price is $64.99, Original price is $86. You Save 24%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

This monograph overviews classic and recent developments in theoretical statistical optics in connection with stationary and non-stationary (pulsed) optical source characterization and modeling, discusses various phenomena occurring with random light propagating in free space, on its interaction with optical systems, extended media and particulate collections. The text includes scalar, beam-like and general electromagnetic treatment of light. A brief statistical description of four fundamental experiments relating to random light: spatial and temporal field interference, intensity interferometry and phase conjugation, is also included in order to relate the analytical descriptions with practical observations.Rigorous mathematical methods for statistical manipulation of light sources useful for remote shaping of its various average properties, enhanced image resolution, optimized transmission in random media and for other applications are introduced. For illustration of efficient ways for manipulation of light polarization the generalized Stokes-Mueller calculus is applied for description of interaction of beam-like fields with classic and currently popular devices of polarization optics, including a spatial light modulator.Random light plays a special role in the image formation process. Three imaging modalities including the classic intensity-based system with structured source correlations, the polarization-based imaging system and the ghost interference approach are discussed in detail.Theoretical aspects of potential scattering of light from weakly scattering media are considered under a very broad range of assumptions: scalar/electromagnetic incident light, deterministic/random light/media, single/particulate media. Then, problems and methods in light characterization on interaction with extended, turbulent-like natural media, such as the Earth's atmosphere, oceans and soft bio-tissues that are currently widely used for communication, remote sensing and imaging purposes in these media, are provided.

Product Details

ISBN-13: 9789811234996
Publisher: World Scientific Publishing Company, Incorporated
Publication date: 08/10/2021
Sold by: Barnes & Noble
Format: eBook
Pages: 336
File size: 10 MB
From the B&N Reads Blog

Customer Reviews