The Sentient Machine: The Coming Age of Artificial Intelligence

The Sentient Machine: The Coming Age of Artificial Intelligence

The Sentient Machine: The Coming Age of Artificial Intelligence

The Sentient Machine: The Coming Age of Artificial Intelligence

eBook

$13.49  $17.99 Save 25% Current price is $13.49, Original price is $17.99. You Save 25%.

Available on Compatible NOOK Devices and the free NOOK Apps.
WANT A NOOK?  Explore Now

Related collections and offers

LEND ME® See Details

Overview

“A must-read for anyone looking to understand how artificial intelligence is poised to transform human society and life.” —Paul Scharre, Author of Four Battlegrounds: Power in the Age of Artificial Intelligence

The future is now. Acclaimed technologist and inventor Amir Husain explains how we can live amidst the coming age of sentient machines and artificial intelligence—and not only survive, but thrive.

Artificial “machine” intelligence is playing an ever-greater role in our society. We are already using cruise control in our cars, automatic checkout at the drugstore, and are unable to live without our smartphones. The discussion around AI is polarized; people think either machines will solve all problems for everyone, or they will lead us down a dark, dystopian path into total human irrelevance. Regardless of what you believe, the idea that we might bring forth intelligent creation can be intrinsically frightening. But what if our greatest role as humans so far is that of creators?

Amir Husain, a brilliant inventor and computer scientist, argues that we are on the cusp of writing our next, and greatest, creation myth. It is the dawn of a new form of intellectual diversity, one that we need to embrace in order to advance the state of the art in many critical fields, including security, resource management, finance, and energy. “In The Sentient Machine, Husain prepares us for a brighter future; not with hyperbole about right and wrong, but with serious arguments about risk and potential” (Dr. Greg Hyslop, Chief Technology Officer, The Boeing Company). He addresses broad existential questions surrounding the coming of AI: Why are we valuable? What can we create in this world? How are we intelligent? What constitutes progress for us? And how might we fail to progress? Husain boils down complex computer science and AI concepts into clear, plainspoken language and draws from a wide variety of cultural and historical references to illustrate his points. Ultimately, Husain challenges many of our societal norms and upends assumptions we hold about “the good life.”

Product Details

ISBN-13: 9781501144691
Publisher: Simon & Schuster
Publication date: 02/13/2024
Sold by: Barnes & Noble
Format: eBook
Pages: 225
Sales rank: 463,793
File size: 2 MB

About the Author

Amir Husain is an award-winning serial entrepreneur and inventor based in Austin, Texas. He serves on IBM’s Advisory Board for Watson & Cognitive Computing and is the Founder and CEO of SparkCognition, Inc., an award-winning company specializing in cognitive computing software solutions that help businesses and governments better respond to a world of ever-evolving threats. Husain speaks at numerous SXSW, defense, cybersecurity, computer science, energy, and environmental conferences. Amir and SparkCognition’s work has been featured in publications, such as Fast Company, Wired,Forbes, and TheNew York Times. The Sentient Machine is his first book.

Read an Excerpt

The Sentient Machine
Today, at this very moment, a kind of membrane is growing around all of us. We can liken this to a planetary skin or even a cortex at the center of our entire built environment. This network, the Internet of Things (IoT), is growing denser and denser as ANI makes more and more of our world “smarter.” The many billions of man-made objects that we interact with daily—cars, stoplights, toothbrushes, bridges—are being transformed from mere static forms to objects with cognition.

Before we look at the immediate implications of this growing intelligence, it’s worth considering how other intelligence “explosions” changed our ancient and preindustrial civilizations. When Australopithecus, or ancient man, started building tools 2.5 million years ago, for example, the crude stone objects he formed served only to more effectively harness the power of human muscle. These tools were not imbued with any form of locomotion independent from man. Fast forward in the story of human evolution to approximately fifteen thousand years ago, with the domestication of cattle, and five thousand years ago, with the domestication of horses, however, and we see “man” seeking out more sophisticated ways to leverage or augment his own muscle. This drive leads to the invention of mechanical devices such as the wheel in 3500 BC and the pulley in 1500 BC. In these innovations, the muscle-power of man is not just harnessed, it is magnified.

Although it took more than two million years, we finally graduated from crude tools shaped from stone and wood into developing systems imbued with their own source of power, independent from us. As long as the animals powering these devices were fed and the mechanisms maintained, we were able to use these systems to perform critical functions, such as raising water from a well and lifting large stones and logs. In the year 1698, with the evolution of the steam engine, we ultimately crossed a bridge into the beginnings of the industrial age. The steam engine enabled a means of making locomotion independent from any form of biology or nature. And in creating this locomotion, we could build bigger, faster, more resilient and powerful muscles than had ever been observed in nature.

Yet despite all this mechanistic prowess, these tools and systems always remained dependent on decisions made by us. We prescribed specific ranges of motion for them, and when one of them needed to be turned on or off, it was inevitably us, humans, pulling the switch. In the early nineteenth century, however, in a subtle shift of machine innovation, all that began to change.

• • •

It was 1801 and French weaver and inventor Joseph Marie Jacquard was looking for a way to create more sophisticated textile designs. Up until that moment, any design beyond basic lines needed to be hand-stitched, meticulously constructed by artisanal craftspeople. Jacquard realized, however, that he could bring a new flexibility to his sewing machines. He decided to teach them to interpret instructions, not just act out the prescribed sequence of movements that their mechanical design dictated. This idea revolutionized not just the textile industry, where it was used to weave a multitude of patterns on the same machine, but industry in general. The punched cards that encoded Jacquard’s designs—programs that defined patterns—were very similar to those used in computers a century and a half later. The act of separating form from function, or instructions from implementation, gave rise to the notion of programmability.

It wasn’t much more than a century and a half later that an entirely new discipline—computer science—emerged. Like the encoding in Jacquard’s looms, computer science evolved frameworks and processes for the efficient specification and execution of complex activities. This science concerned itself with ever-smarter ways of programming machines, and one of its subdisciplines—artificial intelligence—aimed to produce thinking machines entirely independent from humans, physically and mentally.

Today, 216 years after the Jacquard loom was invented, programmable computers the size of a fingernail can control powerful, miniaturized motors and obtain information from a plethora of digital sensors to sample, process, and respond to the real world. An ever-growing sophistication and intelligence in the programs that control these devices, ubiquitous connectivity between them, and a growing capability in the processors, sensors, and actuators to which they are connected promise to lead us into a future we can barely even imagine now.

Welcome to the Internet of Things revolution, an era when intelligence will be embedded everywhere, when synthetic devices and systems will make a growing number of decisions on their own. In this age of IoT, there will be billions of devices communicating with each other: negotiating, interacting, measuring, responding, and initiating all without any human input. In an effort to explain how I see this future evolving, I will paint a picture of IoT adoption in three waves.

We are already firmly in the midst of the first wave of IoT. On the consumer side, we have wearables and gadgets that measure our pulse and heart rate, track how much we’ve walked over the past day, attempt to guess our circadian rhythm and activate an alarm when we’re sleeping lightly, and that automatically send pictures of our home to us when they suspect someone is at the front door—or someone is trying to break in.

On the business side, we have sensors embedded in almost every major industrial asset—from generators and turbines, to pumps, grids, and drilling equipment. These sensors are being used to gauge the more obvious aspects of a system’s performance. They measure things like temperature and pressure and store these measurements for subsequent human analysis.

In some areas, we are on the cusp of entering the second wave of IoT where data captured from first-wave devices will be used by the devices themselves to model the environment, their own behavior, and the behavior of other systems to predict the future. For example, consumer wearables that simply monitor heart rate and pulse will evolve into wearable doctors that won’t stop at measurements, but will, instead, provide a full diagnosis as well as recommendations. In order to make this happen, a greater level of intelligence will need to be embedded in these devices, as will a larger number of sensors and environmental inputs. The cognitive capabilities of the devices themselves, or the networks they connect with, may include the ability to read and process natural language and inputs like photographs and video streams. Imagine a wearable that watches what you eat, figures out what it is, calculates the size and hence caloric intake, and uses that information to warn you of everything from relatively benign diet violations to the accidental ingestion of a food item that could trigger a life-threatening allergic response.

In the world of business, we’ll not only see machines monitoring basic elements of performance, but machines that will use these first-order data streams to evolve deep predictive models that look for higher-order interactions of measured quantities such as vibration, temperature, and pressure to uncover the complex physics that drive systems in the chaotic real world.

We’ll also see network-connected systems that don’t just sense but act in an increasingly sophisticated way. These systems will include delivery drones, self-driving trucks and tractors, and increasingly sophisticated factory and warehouse bots that use vision to detect objects and sort products and packages.

In the third wave, the true potential of the IoT will materialize. We will have unlimited, easy to replicate, massively distributed, and federated network intelligence powering cognitive, fully autonomous devices. Sensors will become incredibly powerful not just because of the capabilities of the hardware, but because of the highly intelligent AI algorithms that will be able to fuse information from basic sensors into a coherent, granular, and complex picture of reality. This will offer a type of picture that goes far beyond what humans are able to build with their eyes, ears, smell, and touch. This will be a world that is perceived most profoundly by the intelligent devices that inhabit it. The humans who built those devices will be left, largely, unable to experience this reality.

This third wave of IoT will include autonomous and mobile systems that sense and avoid conflict in messy, real-world scenarios. Consider, for example, algorithms that empower fleets of hundreds of thousands of autonomous drones to carry out an ever-increasing range of functions for their human owners, from crop dusting to the delivery of emergency medical supplies to policing towns and cities to enabling the next generation of weapon systems in the form of autonomous hunter-killer swarms. As all of these activities power more and more of our built environment, the human starts to leave the loop. As we will see in the following chapters, this will cede decisions in our world to the burgeoning network all around us.

Table of Contents

Robert O. Work ix

Prologue: A Boy's Discovery 1

Part 1 What Is Al?

Part 2 Today and Tomorrow

1 The Emerging Internet of Things 51

2 Healthcare 57

3 Security in the Cyber Age 69

4 Warfare and AI 87

5 Financial Markets 109

6 Cognitive Spaces 129

7 Mind Hacking 143

Part 3 The Future

8 The Missing Block 163

9 Decoupling Work and Purpose 169

10 The Pursuit of Knowledge 173

11 Genesis AI 177

Epilogue: And What of Humanity? 183

Afterword: The Beekeepers Queen 185

Acknowledgments 199

Notes 200

Further Reading 216

Index 217

From the B&N Reads Blog

Customer Reviews