The Physics of Laser Radiation-Matter Interaction: Fundamentals, and Selected Applications in Metrology

The Physics of Laser Radiation-Matter Interaction: Fundamentals, and Selected Applications in Metrology

by Alexander Horn
The Physics of Laser Radiation-Matter Interaction: Fundamentals, and Selected Applications in Metrology

The Physics of Laser Radiation-Matter Interaction: Fundamentals, and Selected Applications in Metrology

by Alexander Horn

Hardcover(1st ed. 2022)

$99.99 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Related collections and offers


Overview

This textbook explains the fundamental processes involved in the interaction of electromagnetic radiation with matter. It leads students from a general discussion of electrodynamics, forming the mathematical foundation for the Maxwell equations, to key results such as the Fresnel equations, Snell’s law, and the Brewster angle, deriving along the way the equations for accelerated charges and discussing dipole radiation, Bremsstrahlung and synchrotron radiation. By considering more and more interacting particles, the book advances its treatment of the subject, approaching the solid-state regime using both classical and quantum mechanical approaches to describe interaction paths with electromagnetic radiation. Finally, specific interactions of laser radiation with matter are explained such as ultrafast, coherent, and selective interaction. With an emphasis on achieving an intuitive grasp of the basic physics underlying common laser technology, this textbook is ideal for graduate students seeking both a better fundamental and applied understanding of laser–matter interaction.

Product Details

ISBN-13: 9783031158612
Publisher: Springer International Publishing
Publication date: 11/21/2022
Edition description: 1st ed. 2022
Pages: 422
Product dimensions: 6.10(w) x 9.25(h) x (d)

About the Author

Alexander Horn is Professor at the University of Applied Sciences Mittweida, Germany, where he focuses his research efforts on the field of laser microtechnologies. Within the Laserinstitute Hochschule Mittweida (LHM), he has established a successful research group in the field of diagnostics for laser processing, investigating, in particular, laser processes during ablation and modification of thin layers. His research activities over the past decades are centered in different areas of laser technologies with ultrashort pulse lasers, in particular the development of innovative ultrafast pump-probe diagnostics, laser material processing with ultrashort pulsed laser radiation, femtosecond spectroscopy, ultrafast laser control, and ultrafast diagnostics. Next to his involvement in numerous professional collaborations, Prof. Horn has headed up different groups at the Fraunhofer Institute for Laser Technology and at the Laser Zentrum Hannover, focusing on current topics in laser application, and acted as project coordinator for a Cluster of Excellence at the Georg August Universität in Göttingen. He leads since 2021 the Laserinstitut Hochschule Mittweida.

Table of Contents

Properties of Electromagnetic Radiation.- Generation of Electromagnetic Radiation.- Elastic Scattering at Charged Particles.- Inelastic Scattering and Absorption.- Scattering by Many Charges.- Scattering in Matter.- Linear Optics.
From the B&N Reads Blog

Customer Reviews