The Heat Kernel and Theta Inversion on SL2(C)

The present monograph develops the fundamental ideas and results surrounding heat kernels, spectral theory, and regularized traces associated to the full modular group acting on SL2(C). The authors begin with the realization of the heat kernel on SL2(C) through spherical transform, from which one manifestation of the heat kernel on quotient spaces is obtained through group periodization. From a different point of view, one constructs the heat kernel on the group space using an eigenfunction, or spectral, expansion, which then leads to a theta function and a theta inversion formula by equating the two realizations of the heat kernel on the quotient space. The trace of the heat kernel diverges, which naturally leads to a regularization of the trace by studying Eisenstein series on the eigenfunction side and the cuspidal elements on the group periodization side. By focusing on the case of SL2(Z[i]) acting on SL2(C), the authors are able to emphasize the importance of specific examples of the general theory of the general Selberg trace formula and uncover the second step in their envisioned "ladder" of geometrically defined zeta functions, where each conjectured step would include lower level zeta functions as factors in functional equations.

1101673310
The Heat Kernel and Theta Inversion on SL2(C)

The present monograph develops the fundamental ideas and results surrounding heat kernels, spectral theory, and regularized traces associated to the full modular group acting on SL2(C). The authors begin with the realization of the heat kernel on SL2(C) through spherical transform, from which one manifestation of the heat kernel on quotient spaces is obtained through group periodization. From a different point of view, one constructs the heat kernel on the group space using an eigenfunction, or spectral, expansion, which then leads to a theta function and a theta inversion formula by equating the two realizations of the heat kernel on the quotient space. The trace of the heat kernel diverges, which naturally leads to a regularization of the trace by studying Eisenstein series on the eigenfunction side and the cuspidal elements on the group periodization side. By focusing on the case of SL2(Z[i]) acting on SL2(C), the authors are able to emphasize the importance of specific examples of the general theory of the general Selberg trace formula and uncover the second step in their envisioned "ladder" of geometrically defined zeta functions, where each conjectured step would include lower level zeta functions as factors in functional equations.

74.49 In Stock
The Heat Kernel and Theta Inversion on SL2(C)

The Heat Kernel and Theta Inversion on SL2(C)

by Jay Jorgenson, Serge Lang
The Heat Kernel and Theta Inversion on SL2(C)

The Heat Kernel and Theta Inversion on SL2(C)

by Jay Jorgenson, Serge Lang

eBook2008 (2008)

$74.49  $99.00 Save 25% Current price is $74.49, Original price is $99. You Save 25%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

The present monograph develops the fundamental ideas and results surrounding heat kernels, spectral theory, and regularized traces associated to the full modular group acting on SL2(C). The authors begin with the realization of the heat kernel on SL2(C) through spherical transform, from which one manifestation of the heat kernel on quotient spaces is obtained through group periodization. From a different point of view, one constructs the heat kernel on the group space using an eigenfunction, or spectral, expansion, which then leads to a theta function and a theta inversion formula by equating the two realizations of the heat kernel on the quotient space. The trace of the heat kernel diverges, which naturally leads to a regularization of the trace by studying Eisenstein series on the eigenfunction side and the cuspidal elements on the group periodization side. By focusing on the case of SL2(Z[i]) acting on SL2(C), the authors are able to emphasize the importance of specific examples of the general theory of the general Selberg trace formula and uncover the second step in their envisioned "ladder" of geometrically defined zeta functions, where each conjectured step would include lower level zeta functions as factors in functional equations.


Product Details

ISBN-13: 9780387380322
Publisher: Springer-Verlag New York, LLC
Publication date: 02/20/2009
Series: Springer Monographs in Mathematics
Sold by: Barnes & Noble
Format: eBook
Pages: 319
File size: 5 MB

Table of Contents

Gaussians, Spherical Inversion, and the Heat Kernel.- Spherical Inversion on SL2(C).- The Heat Gaussian and Heat Kernel.- QED, LEG, Transpose, and Casimir.- Enter ?: The General Trace Formula.- Convergence and Divergence of the Selberg Trace.- The Cuspidal and Noncuspidal Traces.- The Heat Kernel on ?\G/K.- The Fundamental Domain.- ?-Periodization of the Heat Kernel.- Heat Kernel Convolution on (?\G/K).- Fourier-Eisenstein Eigenfunction Expansions.- The Tube Domain for ??.- The ?/U-Fourier Expansion of Eisenstein Series.- Adjointness Formula and the ?\G-Eigenfunction Expansion.- The Eisenstein-Cuspidal Affair.- The Eisenstein Y-Asymptotics.- The Cuspidal Trace Y-Asymptotics.- Analytic Evaluations.
From the B&N Reads Blog

Customer Reviews