The Early Earth: Accretion and Differentiation
The Early Earth: Accretion and Differentiation provides a multidisciplinary overview of the state of the art in understanding the formation and primordial evolution of the Earth.  The fundamental structure of the Earth as we know it today was inherited from the initial conditions 4.56 billion years ago as a consequence of planetesimal accretion, large impacts among planetary objects, and planetary-scale differentiation. The evolution of the Earth from a molten ball of metal and magma to the tectonically active, dynamic, habitable planet that we know today is unique among the terrestrial planets, and understanding the earliest processes that led to Earth’s current state is the essence of this volume. Important results have emerged from a wide range of disciplines including cosmochemistry, geochemistry, experimental petrology, experimental and theoretical mineral physics and geodynamics.

The topics in this volume include:

  • Condensation of primitive objects in the solar nebula, planetary building blocks
  • Early and late accretion and planetary dynamic modeling
  • Primordial differentiation, core formation, Magma Ocean evolution and crystallization

This volume will be a valuable resource for graduate students, academics, and researchers in the fields of geophysics, geochemistry, cosmochemistry, and planetary science.

"1124178903"
The Early Earth: Accretion and Differentiation
The Early Earth: Accretion and Differentiation provides a multidisciplinary overview of the state of the art in understanding the formation and primordial evolution of the Earth.  The fundamental structure of the Earth as we know it today was inherited from the initial conditions 4.56 billion years ago as a consequence of planetesimal accretion, large impacts among planetary objects, and planetary-scale differentiation. The evolution of the Earth from a molten ball of metal and magma to the tectonically active, dynamic, habitable planet that we know today is unique among the terrestrial planets, and understanding the earliest processes that led to Earth’s current state is the essence of this volume. Important results have emerged from a wide range of disciplines including cosmochemistry, geochemistry, experimental petrology, experimental and theoretical mineral physics and geodynamics.

The topics in this volume include:

  • Condensation of primitive objects in the solar nebula, planetary building blocks
  • Early and late accretion and planetary dynamic modeling
  • Primordial differentiation, core formation, Magma Ocean evolution and crystallization

This volume will be a valuable resource for graduate students, academics, and researchers in the fields of geophysics, geochemistry, cosmochemistry, and planetary science.

131.0 In Stock
The Early Earth: Accretion and Differentiation

The Early Earth: Accretion and Differentiation

The Early Earth: Accretion and Differentiation

The Early Earth: Accretion and Differentiation

eBook

$131.00 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers

LEND ME® See Details

Overview

The Early Earth: Accretion and Differentiation provides a multidisciplinary overview of the state of the art in understanding the formation and primordial evolution of the Earth.  The fundamental structure of the Earth as we know it today was inherited from the initial conditions 4.56 billion years ago as a consequence of planetesimal accretion, large impacts among planetary objects, and planetary-scale differentiation. The evolution of the Earth from a molten ball of metal and magma to the tectonically active, dynamic, habitable planet that we know today is unique among the terrestrial planets, and understanding the earliest processes that led to Earth’s current state is the essence of this volume. Important results have emerged from a wide range of disciplines including cosmochemistry, geochemistry, experimental petrology, experimental and theoretical mineral physics and geodynamics.

The topics in this volume include:

  • Condensation of primitive objects in the solar nebula, planetary building blocks
  • Early and late accretion and planetary dynamic modeling
  • Primordial differentiation, core formation, Magma Ocean evolution and crystallization

This volume will be a valuable resource for graduate students, academics, and researchers in the fields of geophysics, geochemistry, cosmochemistry, and planetary science.


Product Details

ISBN-13: 9781118860366
Publisher: Wiley
Publication date: 08/28/2015
Series: Geophysical Monograph Series , #212
Sold by: JOHN WILEY & SONS
Format: eBook
Pages: 198
File size: 17 MB
Note: This product may take a few minutes to download.

About the Author

James Badro is a Professor and Research Director at the Institute of Earth Physics in France. He is a Fellow of the American Geophysical Union and a Life Fellow of the Mineralogical Society of America. His research interests involve deep earth geophysics and geochemistry through high pressure experiments, with special focus on experimental petrology, experimental geochemistry, mineral physics mantle and core composition, structure and dynamics, earth formation and evolution, earth accretion and differentiation. He is a well-known author with numerous research publications including in Science, Nature Materials and Geophysical Monograph Series.

Michael J. Walter is the Professor and Head of School of Earth Sciences at the University of Bristol, UK. His research interests involve high pressure-temperature experimental petrology, geochemistry, and mineral physics with special focus on topics including the differentiation of the mantle and core, Earth accretion, subsolidus lower-mantle phase relations and crystal chemistry, origin and evolution of deep-seated carbonatite magmas and mineral inclusions in diamond. He is a well-known author with numerous publications including in Science and Journal of Geophysical Research.

Table of Contents

Contributors

Preface

Acknowledgements

1. Timing of nebula processes which shaped the precursors of the terrestrial planets

Marc Chaussidon and Ming-Chang Liu

2. The Earth’s building blocks

Frédéric Moynier and Bruce Fegley, Jr.

3. Earth and Terrestrial Planet Formation

Seth A. Jacobson, Kevin J. Walsh

4. Late Accretion and the Late Veneer

Alessandro Morbidelli and Bernard J. Wood

5. Early differentiation and core formation: processes and timescales

Francis Nimmo and Thorsten Kleine

6. An experimental geochemistry perspective on Earth's core formation

Julien Siebert and Anat Shahar

7. Thermal state and evolution of the Earth core and deep mantle

Stéphane Labrosse, John W. Hernlund, and Kei Hirose

8. Early Differentiation and its Long Term Consequences for Earth Evolution

Richard W. Carlson, Maud Boyet, Jonathan O’Neil, Hanika Rizo and Richard J. Walker

Index

From the B&N Reads Blog

Customer Reviews