The Code Breaker: Jennifer Doudna, Gene Editing, and the Future of the Human Race

The Code Breaker: Jennifer Doudna, Gene Editing, and the Future of the Human Race

by Walter Isaacson

Narrated by Kathe Mazur

Unabridged — 16 hours, 4 minutes

The Code Breaker: Jennifer Doudna, Gene Editing, and the Future of the Human Race

The Code Breaker: Jennifer Doudna, Gene Editing, and the Future of the Human Race

by Walter Isaacson

Narrated by Kathe Mazur

Unabridged — 16 hours, 4 minutes

Audiobook (Digital)

$26.09
FREE With a B&N Audiobooks Subscription | Cancel Anytime
$0.00

Free with a B&N Audiobooks Subscription | Cancel Anytime

$29.99 Save 13% Current price is $26.09, Original price is $29.99. You Save 13%.
START FREE TRIAL

Already Subscribed? 

Sign in to Your BN.com Account


Listen on the free Barnes & Noble NOOK app


Related collections and offers

FREE

with a B&N Audiobooks Subscription

Or Pay $26.09 $29.99

Overview

A 2022 Audie Award Finalist

A Best Book of 2021 by Bloomberg BusinessWeek, Time, and The Washington Post

The bestselling author of Leonardo da Vinci and Steve Jobs returns with a “compelling” (The Washington Post) account of how Nobel Prize winner Jennifer Doudna and her colleagues launched a revolution that will allow us to cure diseases, fend off viruses, and have healthier babies.

When Jennifer Doudna was in sixth grade, she came home one day to find that her dad had left a paperback titled The Double Helix on her bed. She put it aside, thinking it was one of those detective tales she loved. When she read it on a rainy Saturday, she discovered she was right, in a way. As she sped through the pages, she became enthralled by the intense drama behind the competition to discover the code of life. Even though her high school counselor told her girls didn't become scientists, she decided she would.

Driven by a passion to understand how nature works and to turn discoveries into inventions, she would help to make what the book's author, James Watson, told her was the most important biological advance since his codiscovery of the structure of DNA. She and her collaborators turned a curiosity of nature into an invention that will transform the human race: an easy-to-use tool that can edit DNA. Known as CRISPR, it opened a brave new world of medical miracles and moral questions.

The development of CRISPR and the race to create vaccines for coronavirus will hasten our transition to the next great innovation revolution. The past half-century has been a digital age, based on the microchip, computer, and internet. Now we are entering a life-science revolution. Children who study digital coding will be joined by those who study genetic code.

Should we use our new evolution-hacking powers to make us less susceptible to viruses? What a wonderful boon that would be! And what about preventing depression? Hmmm...Should we allow parents, if they can afford it, to enhance the height or muscles or IQ of their kids?

After helping to discover CRISPR, Doudna became a leader in wrestling with these moral issues and, with her collaborator Emmanuelle Charpentier, won the Nobel Prize in 2020. Her story is an “enthralling detective story” (Oprah Daily) that involves the most profound wonders of nature, from the origins of life to the future of our species.

Editorial Reviews

Publishers Weekly

★ 02/15/2021

Biographer Isaacson (Leonardo da Vinci) depicts science at its most exhilarating in this lively biography of Jennifer Doudna, the winner of the 2020 Nobel Prize in chemistry for her work on the CRISPR system of gene editing. Born in 1964, Doudna grew up in Hawaii, where she felt isolated and, “like many others who have felt like an outsider, she developed a wide-ranging curiosity about how we humans fit into creation.” Praising her sharp mix of curiosity and competitiveness, Isaacson tracks her role in the race to develop CRISPR technology (which can easily and precisely cut human DNA sequences to change genes), explores the promises of the technique (such as potential cures for sickle cell anemia and cancer) and describes fears that it might herald a world of genetically engineered “designer babies.” Isaacson offers an impassioned take on CRISPR—“I look into the microscope and see them glowing green!” he remarks, peering at a culture of gene-edited cells—along with vivid portraits of the scientists Doudna worked with, including the “guarded but engaging” Emmanuelle Charpentier, with whom she won the Nobel Prize. The result is a gripping account of a great scientific advancement and of the dedicated scientists who realized it. Photos. Agent: Binky Urban, ICM Partners. (Mar.)

From the Publisher

This year’s prize is about rewriting the code of life. These genetic scissors have taken the life sciences into a new epoch.” – Announcement of the 2020 Nobel Prize in Chemistry

"Isaacson’s vivid account is a page-turning detective story and an indelible portrait of a revolutionary thinker who, as an adolescent in Hawai’i, was told that girls don’t do science. Nevertheless, she persisted." — Oprah Magazine.com

"The Code Breaker marks the confluence of perfect writer, perfect subject and perfect timing. The result is almost certainly the most important book of the year.” Minneapolis Star Tribune

“Isaacson captures the scientific process well, including the role of chance. The hard graft at the bench, the flashes of inspiration, the importance of conferences as cauldrons of creativity, the rivalry, sometimes friendly, sometimes less so, and the sense of common purpose are all conveyed in his narrative. The Code Breaker describes a dance to the music of time with these things as its steps, which began with Charles Darwin and Gregor Mendel and shows no sign of ending.” – The Economist

“Isaacson lays everything out with his usual lucid prose; it’s brisk and compelling and even funny throughout. You’ll walk away with a deeper understanding of both the science itself and how science gets done — including plenty of mischief.” – The Washington Post

"This story was always guaranteed to be a page-turner in [Isaacson's] hands." – The Guardian

"The Code Breaker unfolds as an enthralling detective story, crackling with ambition and feuds, laboratories and conferences, Nobel laureates and self-taught mavericks. The book probes our common humanity without ever dumbing down the science, a testament to Isaacson’s own genius on the page." — O Magazine

“Deftly written, conveying the history of CRISPR and also probing larger themes: the nature of discovery, the development of biotech, and the fine balance between competition and collaboration that drives many scientists.”— New York Review of Books

The Code Breaker is in some respects a journal of our 2020 plague year.”The New York Times

"Walter Isaacson is our Renaissance biographer, a writer of unusual range and depth who has plumbed lives of genius to illuminate fundamental truths about human nature. From Leonardo to Steve Jobs, from Benjamin Franklin to Albert Einstein, Isaacson has given us an unparalleled canon of work that chronicles how we have come to live the way we do. Now, in a magnificent, compelling, and wholly original book, he turns his attention to the next frontier: that of gene editing and the role science may play in reshaping the nature of life itself. This is an urgent, sober, accessible, and altogether brilliant achievement." —Jon Meacham

"When a great biographer combines his own fascination with science and a superb narrative style, the result is magic. This important and powerful work, written in the tradition of The Double Helix, allows us not only to follow the story of a brilliant and inspired scientist as she engages in a fierce competitive race, but to experience for ourselves the wonders of nature and the joys of discovery." —Doris Kearns Goodwin

“He’s done it again. The Code Breaker is another Walter Isaacson must-read. This time he has a heroine who will be for the ages; a worldwide cast of remarkable, fiercely competitive scientists; and a string of discoveries that will change our lives far more than the iPhone did. The tale is gripping. The implications mind-blowing.” – Atul Gawande

"An extraordinary book that delves into one of the most path-breaking biological technologies of our times and the creators who helped birth it. This brilliant book is absolutely necessary reading for our era." — Siddhartha Mukherjee

“Now more than ever we should appreciate the beauty of nature and the importance of scientific research; This book and Jennifer Doudna’s career show how thrilling it can be to understand how life works.” —Sue Desmond-Hellmann

“An extraordinarily detailed and revealing account of scientific progress and competition that grants readers behind-the-scenes access to the scientific process, which the COVID-19 pandemic has taught us remains opaque to the wider public. It also provides lessons in science communication that go beyond the story itself.” – Science Magazine

“An indispensable guide to the brave... new world we have entered."Pittsburgh Post-Gazette

"A vital book about the next big thing in science—and yet another top-notch biography from Isaacson." — Kirkus Reviews (starred review)

"In Isaacson's splendid saga of how big science really operates, curiosity and creativity, discovery and innovation, obsession and strong personalities, competitiveness and collaboration, and the beauty of nature all stand out." — Booklist (starred review)

"Isaacson depicts science at its most exhilarating in this lively biography of Jennifer Doudna, the winner of the 2020 Nobel Prize in medicine for her work on the CRISPR system of gene editing...The result is a gripping account of a great scientific advancement and of the dedicated scientists who realized it." — Publisher's Weekly (starred review)

"Isaacson, the Pulitzer Prize-winning author of best sellers Leonardo da Vinci and Steve Jobs, offers a startling, insightful look at this lifesaving, hugely significant scientific advancement and the brilliant Doudna, who wrestles with the serious moral questions that accompany her creation. Should this technology be offered to parents to tailor-make their babies into athletes or Einsteins? Who gets altered and saved and why?” AARP

"A brilliant and engaging book. There are many quotable gems but I have chosen one sentence from the epilogue that epitomizes not only Doudna but also Isaacson himself, whose book title ends with a hortatory claim that CRISPR affects the future of the human race: 'To guide us, we will need not only scientists, but humanists. And most important, we will need people who feel comfortable in both words, like Jennifer Doudna.'" Policy Magazine

AudioFile Magazine

"Kathe Mazur skillfully narrates this clear and well-researched biography of Nobel Prize winner Jennifer Doudna, who, along with colleagues, advanced biochemistry by employing CRISPR technology to improve and simplify genetic engineering—ultimately leading to a safe, effective COVID vaccine. Moving beyond Doudna's own story, this audiobook also discusses the role of women in science, the intersection of research and business, competitiveness (and cooperation) in academia, and the implications of altering human genes. Mazur's personable delivery and measured pace help listeners access the science and connect to Doudna as a woman and a researcher. Her performance highlights the excitement of new discoveries, the difficulties of forging new paths, the wide-ranging ethical concerns of emerging technologies, and the hope for humanity's future. Author Walter Isaacson reads the epilogue."

Library Journal

03/01/2021

In this latest work, best-selling author Isaacson (Steve Jobs) takes a close look at how scientific collaboration actually happens in the modern age, in particular the tension between academic institutions and industry. The author does an admirable job of explaining science in accessible terms and also focusing on the human side of the story. Throughout the work, he sketches quick portraits of the dozens of researchers, scientists, and business people involved with CRISPR from the beginning. Also, given Jennifer Doudna's recent Nobel Prize win for CRISPR, readers will doubtless want to hear more about her life and the attribution controversy that often attends such awards. One person who reappears frequently is molecular biologist James Watson. Isaacson seems determined to create a connection between Doudna and Watson, but, although Dounda read The Double Helix as a child and met Watson several times, their personalities and attitudes toward genetic manipulation could not be more different. Color photographs of all the key players are extremely helpful and break up the text into bite-sized pieces. VERDICT Similar to his previous works, Isaacson's latest is another absorbing story of scientific discovery. The final section on the use of CRISPR to combat COVID-19 will only widen the appeal.—Cate Schneiderman, Emerson Coll., Boston

MARCH 2021 - AudioFile

Kathe Mazur skillfully narrates this clear and well-researched biography of Nobel Prize winner Jennifer Doudna, who, along with colleagues, advanced biochemistry by employing CRISPR technology to improve and simplify genetic engineering—ultimately leading to a safe, effective COVID vaccine. Moving beyond Doudna’s own story, this audiobook also discusses the role of women in science, the intersection of research and business, competitiveness (and cooperation) in academia, and the implications of altering human genes. Mazur’s personable delivery and measured pace help listeners access the science and connect to Doudna as a woman and a researcher. Her performance highlights the excitement of new discoveries, the difficulties of forging new paths, the wide-ranging ethical concerns of emerging technologies, and the hope for humanity’s future. Author Walter Isaacson reads the epilogue. C.B.L. 2022 Audies Finalist © AudioFile 2021, Portland, Maine

Kirkus Reviews

★ 2021-01-06
A magisterial biography of the co-discoverer of what has been called the greatest advance in biology since the discovery of DNA.

For the first third of Isaacson’s latest winner, the author focuses on the life and career of Jennifer Doudna (b. 1964). Raised by academic parents who encouraged her fascination with science, she flourished in college and went on to earn a doctorate in biological chemistry and molecular pharmacology from Harvard. After fellowships and postdoc programs at the University of Colorado and Yale, she joined the faculty at the University of California in 2002. In 2006, she learned about CRISPR, a system of identical repeated DNA sequences in bacteria copied from certain viruses. Others had discovered that this was a defense mechanism—CRISPR DNA generates enzymes that chop up the DNA of the infecting virus. With collaborators, she discovered how CRISPR operates and invented a much simpler technique for cutting DNA and editing genes. Although known since the 1970s, “genetic engineering” was a complex, tedious process. CRISPR made it much simpler. Formally accepted by the editors of Science in 2012, the co-authored paper galvanized the scientific establishment and led to a torrent of awards, culminating in the 2020 Nobel Prize in chemistry. At this point, Isaacson steps back, keeping Doudna as the central character but describing the rush to apply gene editing to altering life and curing diseases, the intense debate over its morality, and the often shameful quarrels over credit and patents. A diligent historian and researcher, Isaacson lucidly explains CRISPR and refuses to pass it off as a far-fetched magic show. Some scientific concepts (nuclear fission, evolution) are easy to grasp but not CRISPR. Using charts, analogies, and repeated warnings for readers to pay attention, the author describes a massively complicated operation in which humans can program heredity. Those familiar with college-level biology will have a better time, but nobody will regret the reading experience.

A vital book about the next big thing in science—and yet another top-notch biography from Isaacson.

Product Details

BN ID: 2940177477022
Publisher: Simon & Schuster
Publication date: 03/09/2021
Edition description: Unabridged
Sales rank: 627,641

Read an Excerpt

Introduction
Into the Breach
 
Jennifer Doudna couldn’t sleep. Berkeley, the university where she was a superstar for her role in inventing the gene-editing technology known as CRISPR, had just shut down its campus because of the fast-spreading coronavirus pandemic. Against her better judgment, she had driven her son, Andy, a high school senior, to the train station so he could go to Fresno for a robot-building competition. Now, at 2 a.m., she roused her husband and insisted that they retrieve him before the start of the match, when more than twelve hundred kids would be gathering in an indoor convention center. They pulled on
their clothes, got in the car, found an open gas station, and made the three-hour drive. Andy, an only child, was not happy to see them, but they convinced him to pack up and come home. As they pulled out of the parking lot, Andy got a text from the team: “Robotics match cancelled! All kids to leave immediately!”
 
This was the moment, Doudna recalls, that she realized her world, and the world of science, had changed. The government was fumbling its response to COVID, so it was time for professors and graduate students, clutching their test tubes and raising their pipettes high, to rush into the breach. The next day—Friday, March 13, 2020—she led a meeting of her Berkeley colleagues and other scientists in the Bay Area to discuss what roles they might play.
 
A dozen of them made their way across the abandoned Berkeley campus and converged on the sleek stone-and-glass building that housed her lab. The chairs in the ground-floor conference room were clustered together, so the first thing they did was move them six feet apart. Then they turned on a video system so that fifty other researchers from nearby universities could join by Zoom. As she stood in front of the room to rally them, Doudna displayed an intensity that she usually kept masked by a calm façade. “This is not something that academics typically do,” she told them. “We need to step up.”2
 
 
It was fitting that a virus-fighting team would be led by a CRISPR pioneer. The gene-editing tool that Doudna and others developed in 2012 is based on a virus-fighting trick used by bacteria, which have been battling viruses for more than a billion years. In their DNA, bacteria develop clustered repeated sequences, known as CRISPRs, that can remember and then destroy viruses that attack them. In other words, it’s an immune system that can adapt itself to fight each new wave of viruses—just what we humans need in an era that has been plagued, as if we were still in the Middle Ages, by repeated viral epidemics.
 
Always prepared and methodical, Doudna (pronounced DOWDnuh) presented slides that suggested ways they might take on the coronavirus. She led by listening. Although she had become a science celebrity, people felt comfortable engaging with her. She had mastered the art of being tightly scheduled while still finding the time to connect with people emotionally.
 
The first team that Doudna assembled was given the job of creating a coronavirus testing lab. One of the leaders she tapped was a postdoc named Jennifer Hamilton who, a few months earlier, had spent a day teaching me to use CRISPR to edit human genes. I was pleased, but also a bit unnerved, to see how easy it was. Even I could do it!
 
Another team was given the mission of developing new types of coronavirus tests based on CRISPR. It helped that Doudna liked commercial enterprises. Three years earlier, she and two of her graduate students had started a company to use CRISPR as a tool for detecting viral diseases.
 
In launching an effort to find new tests to detect the coronavirus, Doudna was opening another front in her fierce but fruitful struggle with a cross-country competitor. Feng Zhang, a charming young China-born and Iowa-raised researcher at the Broad Institute of MIT and Harvard, had been her rival in the 2012 race to turn CRISPR into a gene-editing tool, and ever since then they had been locked in an intense competition to make scientific discoveries and form CRISPRbased companies. Now, with the outbreak of the pandemic, they would engage in another race, this one spurred not by the pursuit of patents but by a desire to do good.
 
Doudna settled on ten projects. She suggested leaders for each and told the others to sort themselves into the teams. They should pair up with someone who would perform the same functions, so that there could be a battlefield promotion system: if any of them were struck by the virus, there would be someone to step in and continue their work. It was the last time they would meet in person. From then on the teams would collaborate by Zoom and Slack.
 
“I’d like everyone to get started soon,” she said. “Really soon.”
 
“Don’t worry,” one of the participants assured her. “Nobody’s got any travel plans.”
 
 
What none of the participants discussed was a longer-range prospect: using CRISPR to engineer inheritable edits in humans that would make our children, and all of our descendants, less vulnerable to virus infections. These genetic improvements could permanently alter the human race.
 
“That’s in the realm of science fiction,” Doudna said dismissively when I raised the topic after the meeting. Yes, I agreed, it’s a bit like Brave New World or Gattaca. But as with any good science fiction, elements have already come true. In November 2018, a young Chinese scientist who had been to some of Doudna’s gene-editing conferences used CRISPR to edit embryos and remove a gene that produces a receptor for HIV, the virus that causes AIDS. It led to the birth of twin girls, the world’s first “designer babies.”
 
There was an immediate outburst of awe and then shock. Arms flailed, committees convened. After more than three billion years of evolution of life on this planet, one species (us) had developed the talent and temerity to grab control of its own genetic future. There was a sense that we had crossed the threshold into a whole new age, perhaps a brave new world, like when Adam and Eve bit into the apple or Prometheus snatched fire from the gods.
 
Our newfound ability to make edits to our genes raises some fascinating questions. Should we edit our species to make us less susceptible to deadly viruses? What a wonderful boon that would be! Right? Should we use gene editing to eliminate dreaded disorders, such as Huntington’s, sickle-cell anemia, and cystic fibrosis? That sounds good, too. And what about deafness or blindness? Or being short? Or depressed? Hmmm . . . How should we think about that? A few decades from now, if it becomes possible and safe, should we allow parents to enhance the IQ and muscles of their kids? Should we let
them decide eye color? Skin color? Height?
 
Whoa! Let’s pause for a moment before we slide all of the way down this slippery slope. What might that do to the diversity of our societies? If we are no longer subject to a random natural lottery when it comes to our endowments, will it weaken our feelings of empathy and acceptance? If these offerings at the genetic supermarket aren’t free (and they won’t be), will that greatly increase inequality—and indeed encode it permanently in the human race? Given these issues, should such decisions be left solely to individuals, or should society as a whole have some say? Perhaps we should develop some rules.
 
By “we” I mean we. All of us, including you and me. Figuring out if and when to edit our genes will be one of the most consequential questions of the twenty-first century, so I thought it would be useful to understand how it’s done. Likewise, recurring waves of virus epidemics make it important to understand the life sciences. There’s a joy that springs from fathoming how something works, especially when that something is ourselves. Doudna relished that joy, and so can we. That’s what this book is about.
 
 
The invention of CRISPR and the plague of COVID will hasten our transition to the third great revolution of modern times. These revolutions arose from the discovery, beginning just over a century ago, of the three fundamental kernels of our existence: the atom, the bit, and the gene.
 
The first half of the twentieth century, beginning with Albert Einstein’s 1905 papers on relativity and quantum theory, featured a revolution driven by physics. In the five decades following his miracle year, his theories led to atom bombs and nuclear power, transistors and spaceships, lasers and radar.
 
The second half of the twentieth century was an information-technology era, based on the idea that all information could be encoded by binary digits—known as bits—and all logical processes could be performed by circuits with on-off switches. In the 1950s, this led to the development of the microchip, the computer, and the internet. When these three innovations were combined, the digital revolution was born.
 
Now we have entered a third and even more momentous era, a life-science revolution. Children who study digital coding will be joined by those who study genetic code.
 
When Doudna was a graduate student in the 1990s, other biologists were racing to map the genes that are coded by our DNA. But she became more interested in DNA’s less-celebrated sibling, RNA. It’s the molecule that actually does the work in a cell by copying some of the instructions coded by the DNA and using them to build proteins. Her quest to understand RNA led her to that most fundamental question: How did life begin? She studied RNA molecules that could replicate themselves, which raised the possibility that in the stew of chemicals on this planet four billion years ago they started to reproduce
even before DNA came into being.
 
As a biochemist at Berkeley studying the molecules of life, she focused on figuring out their structure. If you’re a detective, the most basic clues in a biological whodunit come from discovering how a molecule’s twists and folds determine the way it interacts with other molecules. In Doudna’s case, that meant studying the structure of RNA. It was an echo of the work Rosalind Franklin had done with DNA, which was used by James Watson and Francis Crick to discover the double-helix structure of DNA in 1953. As it happens, Watson, a complex figure, would weave in and out of Doudna’s life.
 
Doudna’s expertise in RNA led to a call from a biologist at Berkeley who was studying the CRISPR system that bacteria developed in their battle against viruses. Like a lot of basic science discoveries, it turned out to have practical applications. Some were rather ordinary, such as protecting the bacteria in yogurt cultures. But in 2012 Doudna and others figured out a more earth-shattering use: how to turn CRISPR into a tool to edit genes.
 
CRISPR is now being used to treat sickle-cell anemia, cancers, and blindness. And in 2020, Doudna and her teams began exploring how CRISPR could detect and destroy the coronavirus. “CRISPR evolved in bacteria because of their long-running war against viruses,” Doudna says. “We humans don’t have time to wait for our own cells to evolve natural resistance to this virus, so we have to use our ingenuity to do that. Isn’t it fitting that one of the tools is this ancient bacterial immune system called CRISPR? Nature is beautiful that way.” Ah, yes. Remember that phrase: Nature is beautiful. That’s another theme of this book.
 
 
There are other star players in the field of gene editing. Most of them deserve to be the focus of biographies or perhaps even movies. (The elevator pitch: A Beautiful Mind meets Jurassic Park.) They play important roles in this book, because I want to show that science is a team sport. But I also want to show the impact that a persistent, sharply inquisitive, stubborn, and edgily competitive player can have. With a smile that sometimes (but not always) masks the wariness in her eyes, Jennifer Doudna turned out to be a great central character. She has the instincts to be collaborative, as any scientist must, but ingrained in her character is a competitive streak, which most great innovators have. With her emotions usually carefully controlled, she wears her star status lightly.
 
Her life story—as a researcher, Nobel Prize winner, and public policy thinker—connects the CRISPR tale to some larger historical threads, including the role of women in science. Her work also illustrates, as Leonardo da Vinci’s did, that the key to innovation is connecting a curiosity about basic science to the practical work of devising tools that can be applied to our lives—moving discoveries from lab bench to bedside.
 
By telling her story, I hope to give an up-close look at how science works. What actually happens in a lab? To what extent do discoveries depend on individual genius, and to what extent has teamwork become more critical? Has the competition for prizes and patents undermined collaboration?
 
Most of all, I want to convey the importance of basic science, meaning quests that are curiosity-driven rather than application-oriented. Curiosity-driven research into the wonders of nature plants the seeds, sometimes in unpredictable ways, for later innovations.3 Research about surface-state physics eventually led to the transistor and microchip. Likewise, studies of an astonishing method that bacteria use to fight off viruses eventually led to a gene-editing tool and techniques that humans can use in their own struggle against viruses.
 
It is a story filled with the biggest of questions, from the origins of life to the future of the human race. And it begins with a sixth-grade girl who loved searching for “sleeping grass” and other fascinating phenomena amid the lava rocks of Hawaii, coming home from school one day and finding on her bed a detective tale about the people who discovered what they proclaimed to be, with only a little exaggeration, “the secret of life.”
 

From the B&N Reads Blog

Customer Reviews