Spectroscopy and Optical Diagnostics for Gases
This text provides an introduction to the science that governs the interaction of light and matter (in the gas phase). It provides readers with the basic knowledge to exploit the light-matter interaction to develop quantitative tools for gas analysis (i.e. optical diagnostics) and understand and interpret the results of spectroscopic measurements. The authors pair the basics of gas‐phase spectroscopy with coverage of key optical diagnostic techniques utilized by practicing engineers and scientists to measure fundamental flow‐field properties. The text is organized to cover three sub‐topics of gas‐phase spectroscopy: (1) spectral line positions, (2) spectral line strengths, and (3) spectral lineshapes by way of absorption, emission, and scattering interactions. The latter part of the book describes optical measurement techniques and equipment. Key subspecialties include laser induced fluorescence, tunable laser absorption spectroscopy, and wavelength modulation spectroscopy. It is idealfor students and practitioners across a range of applied sciences including mechanical, aerospace, chemical, and materials engineering.
"1122298433"
Spectroscopy and Optical Diagnostics for Gases
This text provides an introduction to the science that governs the interaction of light and matter (in the gas phase). It provides readers with the basic knowledge to exploit the light-matter interaction to develop quantitative tools for gas analysis (i.e. optical diagnostics) and understand and interpret the results of spectroscopic measurements. The authors pair the basics of gas‐phase spectroscopy with coverage of key optical diagnostic techniques utilized by practicing engineers and scientists to measure fundamental flow‐field properties. The text is organized to cover three sub‐topics of gas‐phase spectroscopy: (1) spectral line positions, (2) spectral line strengths, and (3) spectral lineshapes by way of absorption, emission, and scattering interactions. The latter part of the book describes optical measurement techniques and equipment. Key subspecialties include laser induced fluorescence, tunable laser absorption spectroscopy, and wavelength modulation spectroscopy. It is idealfor students and practitioners across a range of applied sciences including mechanical, aerospace, chemical, and materials engineering.
48.99 In Stock
Spectroscopy and Optical Diagnostics for Gases

Spectroscopy and Optical Diagnostics for Gases

Spectroscopy and Optical Diagnostics for Gases

Spectroscopy and Optical Diagnostics for Gases

eBook1st ed. 2016 (1st ed. 2016)

$48.99  $64.99 Save 25% Current price is $48.99, Original price is $64.99. You Save 25%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

This text provides an introduction to the science that governs the interaction of light and matter (in the gas phase). It provides readers with the basic knowledge to exploit the light-matter interaction to develop quantitative tools for gas analysis (i.e. optical diagnostics) and understand and interpret the results of spectroscopic measurements. The authors pair the basics of gas‐phase spectroscopy with coverage of key optical diagnostic techniques utilized by practicing engineers and scientists to measure fundamental flow‐field properties. The text is organized to cover three sub‐topics of gas‐phase spectroscopy: (1) spectral line positions, (2) spectral line strengths, and (3) spectral lineshapes by way of absorption, emission, and scattering interactions. The latter part of the book describes optical measurement techniques and equipment. Key subspecialties include laser induced fluorescence, tunable laser absorption spectroscopy, and wavelength modulation spectroscopy. It is idealfor students and practitioners across a range of applied sciences including mechanical, aerospace, chemical, and materials engineering.

Product Details

ISBN-13: 9783319232522
Publisher: Springer-Verlag New York, LLC
Publication date: 10/26/2015
Sold by: Barnes & Noble
Format: eBook
File size: 5 MB

About the Author

Ronald K. Hanson is the Woodard Professor of Mechanical Engineering atStanford University. Prof. Hanson has been actively involved in teaching and appliedspectroscopy research at the High TemperatureGasdynamics Laboratory at Stanfordfor over 40 years, resulting in over 95 Ph.Ds being awarded under his supervision.The Hanson research group has published over 1000 technical papers, contributingto many advances in optical diagnostics, and also shock wave physics, chemicalkinetics, combustion science and advanced propulsion. Co-authors Dr. MitchellSpearrin and Dr. Christopher Goldenstein are former students of Prof. Hanson’sresearch group.
R. Mitchell Spearrin is an Assistant Professor of Mechanical and AerospaceEngineering at the University of California Los Angeles (UCLA). Prof. Spearrin’sresearch focuses on spectroscopy and optical sensors with experimental applicationto dynamic flow fields in aerospace, energy, and biomedical systems.
Christopher S. Goldenstein is an Assistant Professor of Mechanical Engineeringat Purdue University. Prof. Goldenstein’s research focuses on the development andapplication of laser-based sensors for studying energetic materials, energy systems,and trace gases.

Table of Contents

Introduction.- Diatomic Molecular Spectra.- Bond Dissociation Energies.- Polyatomic Molecular Spectra.- Effects of Nuclear Spin.- Rayleigh&Raman Spectra.- Quantitative Emission and Absorption.- Spectral Lineshapes.- Electronic Spectra of Atoms.- Electronic Spectra of Diatomics.- Laser-Induced Fluorescence.- Diagnostic Techniques.- Spectroscopy Equipment.- Case Studies.- Glossary.- Voigt Tables.- Voigt Fitting Program.- HITRAN Database.- Center of Symmetry.- Fluorescence Yield: Multi-level Models.
From the B&N Reads Blog

Customer Reviews