Spacecraft Attitude Control: A Linear Matrix Inequality Approach

Spacecraft Attitude Control: A Linear Matrix Inequality Approach solves problemsfor spacecraft attitude control systems using convex optimization and, specifi cally,through a linear matrix inequality (LMI) approach. High-precision pointing and improvedrobustness in the face of external disturbances and other uncertainties are requirementsfor the current generation of spacecraft. This book presents an LMI approach to spacecraftattitude control and shows that all uncertainties in the maneuvering process can besolved numerically. It explains how a model-like state space can be developed through amathematical presentation of attitude control systems, allowing the controller in question tobe applied universally. The authors describe a wide variety of novel and robust controllers,applicable both to spacecraft attitude control and easily extendable to second-ordersystems. Spacecraft Attitude Control provides its readers with an accessible introductionto spacecraft attitude control and robust systems, giving an extensive survey of currentresearch and helping researchers improve robust control performance.

  • Considers the control requirements of modern spacecraft
  • Presents rigid and flexible spacecraft control systems with inherent uncertainties mathematically, leading to a model-like state space
  • Develops a variety of novel and robust controllers directly applicable to spacecraft control as well as extendable to other second-order systems
  • Includes a systematic survey of recent research in spacecraft attitude control
1140305590
Spacecraft Attitude Control: A Linear Matrix Inequality Approach

Spacecraft Attitude Control: A Linear Matrix Inequality Approach solves problemsfor spacecraft attitude control systems using convex optimization and, specifi cally,through a linear matrix inequality (LMI) approach. High-precision pointing and improvedrobustness in the face of external disturbances and other uncertainties are requirementsfor the current generation of spacecraft. This book presents an LMI approach to spacecraftattitude control and shows that all uncertainties in the maneuvering process can besolved numerically. It explains how a model-like state space can be developed through amathematical presentation of attitude control systems, allowing the controller in question tobe applied universally. The authors describe a wide variety of novel and robust controllers,applicable both to spacecraft attitude control and easily extendable to second-ordersystems. Spacecraft Attitude Control provides its readers with an accessible introductionto spacecraft attitude control and robust systems, giving an extensive survey of currentresearch and helping researchers improve robust control performance.

  • Considers the control requirements of modern spacecraft
  • Presents rigid and flexible spacecraft control systems with inherent uncertainties mathematically, leading to a model-like state space
  • Develops a variety of novel and robust controllers directly applicable to spacecraft control as well as extendable to other second-order systems
  • Includes a systematic survey of recent research in spacecraft attitude control
131.49 In Stock
Spacecraft Attitude Control: A Linear Matrix Inequality Approach

Spacecraft Attitude Control: A Linear Matrix Inequality Approach

Spacecraft Attitude Control: A Linear Matrix Inequality Approach

Spacecraft Attitude Control: A Linear Matrix Inequality Approach

eBook

$131.49  $175.00 Save 25% Current price is $131.49, Original price is $175. You Save 25%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Spacecraft Attitude Control: A Linear Matrix Inequality Approach solves problemsfor spacecraft attitude control systems using convex optimization and, specifi cally,through a linear matrix inequality (LMI) approach. High-precision pointing and improvedrobustness in the face of external disturbances and other uncertainties are requirementsfor the current generation of spacecraft. This book presents an LMI approach to spacecraftattitude control and shows that all uncertainties in the maneuvering process can besolved numerically. It explains how a model-like state space can be developed through amathematical presentation of attitude control systems, allowing the controller in question tobe applied universally. The authors describe a wide variety of novel and robust controllers,applicable both to spacecraft attitude control and easily extendable to second-ordersystems. Spacecraft Attitude Control provides its readers with an accessible introductionto spacecraft attitude control and robust systems, giving an extensive survey of currentresearch and helping researchers improve robust control performance.

  • Considers the control requirements of modern spacecraft
  • Presents rigid and flexible spacecraft control systems with inherent uncertainties mathematically, leading to a model-like state space
  • Develops a variety of novel and robust controllers directly applicable to spacecraft control as well as extendable to other second-order systems
  • Includes a systematic survey of recent research in spacecraft attitude control

Product Details

ISBN-13: 9780323990066
Publisher: Elsevier Science
Publication date: 01/31/2022
Sold by: Barnes & Noble
Format: eBook
Pages: 384
File size: 20 MB
Note: This product may take a few minutes to download.

About the Author

Chuang Liu is an Associate Professor at Northwestern Polytechnical University, China. He is also Scientific Committee Member of Aeromeet 2022. He received the COSPAR Outstanding Paper Award for Young Scientists in 2020. His research focuses on aerospace engineering.
Xiaokui Yue is a Professor at Northwestern Technical University, China. His research has focused on the frontiers of space exploration and on computational methods for nonlinear dynamical systems.
Keke Shi is a Research Assistant at the Harbin Institute of Technology, China. His research is focused on overall spacecraft design and dynamics control.
Zhaowei Sun is a Professor at the Harbin Institute of Technology, China. His research focuses on overall spacecraft dynamics and control.

Table of Contents

1. Introduction of basic knowledge 2. State feedback nonfragile control 3. Dynamic output feedback nonfragile control 4. Observer-based fault tolerant delayed control 5. Observer-based fault tolerant nonfragile control 6. Disturbance observer-based control with input magnitude and rate constraints 7. Improved mixed H2/HN control with poles assignment constraint 8. Nonfragile HN control with input constraints 9. Antidisturbance control with active vibration suppression 10. Chaotic attitude tracking control 11. Underactuated chaotic attitude stabilization control

What People are Saying About This

From the Publisher

Presents solutions to spacecraft attitude control systems using a linear matrix inequality (LMI) approach

From the B&N Reads Blog

Customer Reviews