Sensitive Matter: Foams, Gels, Liquid Crystals, and Other Miracles

Life would not exist without sensitive, or soft, matter. All biological structures depend on it, including red blood globules, lung fluid, and membranes. So do industrial emulsions, gels, plastics, liquid crystals, and granular materials. What makes sensitive matter so fascinating is its inherent versatility. Shape-shifting at the slightest provocation, whether a change in composition or environment, it leads a fugitive existence.

Physicist Michel Mitov brings drama to molecular gastronomy (as when two irreconcilable materials are mixed to achieve the miracle of mayonnaise) and offers answers to everyday questions, such as how does paint dry on canvas, why does shampoo foam better when you “repeat,” and what allows for the controlled release of drugs? Along the way we meet a futurist cook, a scientist with a runaway imagination, and a penniless inventor named Goodyear who added sulfur to latex, quite possibly by accident, and created durable rubber.

As Mitov demonstrates, even religious ritual is a lesson in the surprising science of sensitive matter. Thrice yearly, the reliquary of St. Januarius is carried down cobblestone streets from the Cathedral to the Church of St. Clare in Naples. If all goes as hoped—and since 1389 it often has—the dried blood contained in the reliquary’s largest vial liquefies on reaching its destination, and Neapolitans are given a reaffirming symbol of renewal.

"1111378425"
Sensitive Matter: Foams, Gels, Liquid Crystals, and Other Miracles

Life would not exist without sensitive, or soft, matter. All biological structures depend on it, including red blood globules, lung fluid, and membranes. So do industrial emulsions, gels, plastics, liquid crystals, and granular materials. What makes sensitive matter so fascinating is its inherent versatility. Shape-shifting at the slightest provocation, whether a change in composition or environment, it leads a fugitive existence.

Physicist Michel Mitov brings drama to molecular gastronomy (as when two irreconcilable materials are mixed to achieve the miracle of mayonnaise) and offers answers to everyday questions, such as how does paint dry on canvas, why does shampoo foam better when you “repeat,” and what allows for the controlled release of drugs? Along the way we meet a futurist cook, a scientist with a runaway imagination, and a penniless inventor named Goodyear who added sulfur to latex, quite possibly by accident, and created durable rubber.

As Mitov demonstrates, even religious ritual is a lesson in the surprising science of sensitive matter. Thrice yearly, the reliquary of St. Januarius is carried down cobblestone streets from the Cathedral to the Church of St. Clare in Naples. If all goes as hoped—and since 1389 it often has—the dried blood contained in the reliquary’s largest vial liquefies on reaching its destination, and Neapolitans are given a reaffirming symbol of renewal.

31.99 In Stock
Sensitive Matter: Foams, Gels, Liquid Crystals, and Other Miracles

Sensitive Matter: Foams, Gels, Liquid Crystals, and Other Miracles

Sensitive Matter: Foams, Gels, Liquid Crystals, and Other Miracles

Sensitive Matter: Foams, Gels, Liquid Crystals, and Other Miracles

eBook

$31.99  $42.00 Save 24% Current price is $31.99, Original price is $42. You Save 24%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Life would not exist without sensitive, or soft, matter. All biological structures depend on it, including red blood globules, lung fluid, and membranes. So do industrial emulsions, gels, plastics, liquid crystals, and granular materials. What makes sensitive matter so fascinating is its inherent versatility. Shape-shifting at the slightest provocation, whether a change in composition or environment, it leads a fugitive existence.

Physicist Michel Mitov brings drama to molecular gastronomy (as when two irreconcilable materials are mixed to achieve the miracle of mayonnaise) and offers answers to everyday questions, such as how does paint dry on canvas, why does shampoo foam better when you “repeat,” and what allows for the controlled release of drugs? Along the way we meet a futurist cook, a scientist with a runaway imagination, and a penniless inventor named Goodyear who added sulfur to latex, quite possibly by accident, and created durable rubber.

As Mitov demonstrates, even religious ritual is a lesson in the surprising science of sensitive matter. Thrice yearly, the reliquary of St. Januarius is carried down cobblestone streets from the Cathedral to the Church of St. Clare in Naples. If all goes as hoped—and since 1389 it often has—the dried blood contained in the reliquary’s largest vial liquefies on reaching its destination, and Neapolitans are given a reaffirming symbol of renewal.


Product Details

ISBN-13: 9780674069244
Publisher: Harvard University Press
Publication date: 04/10/2012
Sold by: Barnes & Noble
Format: eBook
Pages: 208
File size: 2 MB

About the Author

Michel Mitov is Director of Research at CNRS (National Center for Scientific Research, France) and Head of Liquid Crystal Group at CEMES (Centre d’Elaboration de Matériaux et d’Etudes Structurales) in Toulouse

Read an Excerpt

From Chapter One: Peacemaking among enemies…easy when a mediator is involved


In 1756, the Duke of Richelieu’s chef brought back from Port Mahon (a town in the Balearic islands that the duke had conquered, in the military sense of the word) a recipe for a sauce based on olive oil and egg yolk. He called his discovery mahonnaise; later, it became mayonnaise. Of course, a story this specific about a preparation this famous is asking to be contested. And indeed, it is said, though less convincingly, that the word is derived from magnonaise (from magner or manier – to handle) or from moyeunaise (in the Middle Ages, the yolk of an egg was known as moyeu). It also (and still) appears that the inhabitants of la Mayenne and Bayonne make some claim to parentage based on phonetic proximity. At any rate, everybody would agree that oil does not mix with water; by this reasoning, it should not mix with egg yolk, either, which is 50 percent water. But why? Although, electrically speaking, a molecule of water is neutral, its atoms do carry charges: the single oxygen (O) has two negative charges, and each of the molecule’s two hydrogen (H) atoms has a positive charge. Two water molecules unite when a hydrogen atom on one is attracted to the oxygen atom on the other, forming a hydrogen bond. Molecules that contain OH groups generally form hydrogen bonds with water molecules. Oil molecules, on the other hand, are triglycerides composed of carbon and hydrogen. Their structure resembles a comb with three teeth and has no space for OH groups. Which brings us back to the question of how to bring oil and water together.

Can it be done? Temporarily, yes, because egg yolk contains not only water but also lecithin molecules, which act as mediators. Each consists of two parts: one water-loving (hydrophilic) and the other – two-tailed – that is water-hating (hydrophobic). We call these dual-affinity molecules amphiphiles from the Greek philos (friend) and amphi (both), which expresses the idea of a double possibility (an amphitheater has a left and a right side, an amphora has two handles). Amphiphilia will feature throughout our journey, whether the amphiphilic molecules be natural or synthetic, and their functions biological or industrial.

In creating a stable mayonnaise with an oil concentration of more than 60 percent, lecithin molecules play a double role. They coat the drops of oil by linking their water-hating tails to them; the resulting “spheres” are called micelles, from the Latin mica, for “morsel” (their thin-leaved structure enables mica fragments to be peeled apart). They also ensure the dispersion of the oil drops by exposing their hydrophilic heads to the water. The egg yolk proteins fulfill the same functions.

Micelles swell as oil is added, and the mix must be beaten all the while to break up the mass of oil into droplets. If too much oil is added, the drops coalesce into unequally sized larger drops. The mayonnaise then fails because there are no longer enough amphiphiles to protect all the interfaces between the oil and the water. If there is too much yolk, the sauce will taste overwhelmingly of egg. The consistency will also be too firm owing to the closeness of the oil drops. Not enough water can ruin a mayonnaise too, although adding a few drops of water, vinegar, or lemon juice while beating may resurrect it. Naturally, these measures also serve to soften the sauce, after which more oil can be added until it becomes too firm again, whereupon additional drops of water can be added, and so forth. This is a practical way of gradually optimizing the quantity of amphiphilic molecules. If the concentration in the aqueous phase (state) is too high, the result will be an emulsion of water in oil that risks catastrophic phase separation of the constituents. Mustard also contributes amphiphilic molecules.

Table of Contents

Contents Preface: Matter, Are You There? Prologue: Sensitive Matter, Divine Matter? Introduction: Let Us Praise Sensitivity, a Unifying Virtue Conciliation: The Art of Resolving Conflicts 1. Peacemaking among Enemies . . . Easy When 2. Dissolving Fat in Water: A Question of Organization 3. Don’t Mix, Associate! Revelation: The Little Additive That Changes Everything 4. Rubber: A Story Nearly Cut Short 5. The Firefighter’s Jet Stream: Reach for the Sky 6. The Glamorous Affair of Gas and Liquid 7. Down with Foam! 8. Breathing: An Unseen Triumph 9. Familiarity and Distance: Colloids 10. Sensitive Cooking 11. A Cell, Though Not a Prison 12. Putting Drug Delivery on Controlled Release 13. Perpetual Sensitivity: Granular Matter 14. Liquefaction of the “Blood” of St. Januarius Epilogue Bonus Tracks Notes Bibliography Acknowledgments Credits Index of Sensitive Materials Index of Proper Names
From the B&N Reads Blog

Customer Reviews