Semiconductor Lasers: Stability, Instability and Chaos
This monograph describes fascinating recent progress in the field of chaos, stability and instability of semiconductor lasers. Applications and future prospects are discussed in detail. The book emphasizes the various dynamics induced in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Recent results of both theoretical and experimental investigations are presented. Demonstrating applications of semiconductor laser chaos, control and noise, Semiconductor Lasers describes suppression and chaotic secure communications. For those who are interested in optics but not familiar with nonlinear systems, a brief introduction to chaos analysis is presented.
"1133675083"
Semiconductor Lasers: Stability, Instability and Chaos
This monograph describes fascinating recent progress in the field of chaos, stability and instability of semiconductor lasers. Applications and future prospects are discussed in detail. The book emphasizes the various dynamics induced in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Recent results of both theoretical and experimental investigations are presented. Demonstrating applications of semiconductor laser chaos, control and noise, Semiconductor Lasers describes suppression and chaotic secure communications. For those who are interested in optics but not familiar with nonlinear systems, a brief introduction to chaos analysis is presented.
201.99 In Stock
Semiconductor Lasers: Stability, Instability and Chaos

Semiconductor Lasers: Stability, Instability and Chaos

by Junji Ohtsubo
Semiconductor Lasers: Stability, Instability and Chaos

Semiconductor Lasers: Stability, Instability and Chaos

by Junji Ohtsubo

eBook4th ed. 2017 (4th ed. 2017)

$201.99  $269.00 Save 25% Current price is $201.99, Original price is $269. You Save 25%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

This monograph describes fascinating recent progress in the field of chaos, stability and instability of semiconductor lasers. Applications and future prospects are discussed in detail. The book emphasizes the various dynamics induced in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Recent results of both theoretical and experimental investigations are presented. Demonstrating applications of semiconductor laser chaos, control and noise, Semiconductor Lasers describes suppression and chaotic secure communications. For those who are interested in optics but not familiar with nonlinear systems, a brief introduction to chaos analysis is presented.

Product Details

ISBN-13: 9783319561387
Publisher: Springer-Verlag New York, LLC
Publication date: 05/03/2017
Series: Springer Series in Optical Sciences , #111
Sold by: Barnes & Noble
Format: eBook
File size: 12 MB
Note: This product may take a few minutes to download.

About the Author

Junji Ohtsubo received the B.S. degree in electronics from the Kyushu Institute of Technology in 1973, and the M.S. and Ph.D. degrees in electronics from Hokkaido University in 1975 and 1978, respectively. In 1978, he joined the Mechanical Engineering Laboratory, MITI, Japan. During 1981–1982, he was a Research Associate at the Institute of Optics, University of Rochester. He joined Shizuoka University, Shizuoka, Japan, as an Associate Professor in 1985 and was a Professor at the Department of Systems Engineering from 1993. He is now a Professor Emeritus of Shizuoka Univeristy. His current research interests are nonlinear dynamics in optics, chaos in semiconductor lasers, optical information processing and computing, optical security systems, statistical optics, speckle, and optical metrology.

Prof. Ohtsubo is a Fellow of the Optical Society of America and a member of IEEE, SPIE, ASP, the Japanese Society of Applied Physics, the Optical Society of Japan, and the LaserSociety of Japan. 

Table of Contents

Introduction     1
Chaos and Lasers     1
Historical Perspectives of Chaos in Semiconductor Lasers     3
Outline of This Book     6
Chaos in Laser Systems     11
Laser Model and Bloch Equations     11
Laser Model in a Ring Resonator     11
Light Emission and Absorption in Two-Level Atoms     13
Maxwell-Bloch Equations     14
Lorenz-Haken Equations     15
Lorenz-Haken Equations     15
First Laser Threshold     16
Second Laser Threshold     18
Classifications of Lasers     20
Classes of Lasers     20
Class C Lasers     20
Class B Lasers     23
Class A Lasers     24
Semiconductor Lasers and Theory     25
Semiconductor Lasers     25
Oscillation Conditions of Semiconductor Lasers     26
Laser Oscillation Conditions     26
Laser Oscillation Frequency     28
Dependence of Oscillation Frequency on Carrier Density     29
Derivation of Rate Equations     29
Gain at Laser Oscillation     29
Rate Equation for the Field     30
Linewidth Enhancement Factor     32
Laser Rate Equations     33
Linear Stability Analysis and Relaxation Oscillation     37
Linear Stability Analysis     37
Relaxation Oscillation     38
Langevin Noises     40
Rate Equations Including Langevin Noises     40
Langevin Noises     41
Noise Spectrum     43
Relative Intensity Noise (RIN)     43
Phase Noise and Spectral Linewidth     44
Modulation Characteristics     47
Injection Current Modulation     47
Intensity Modulation Characteristics     48
Phase Modulation Characteristics     50
Waveguide Models of Semiconductor Lasers     51
Index- and Gain-Guided Structures     51
Waveguide Models     53
Spatial Modes of Gain- and Index-Guided Lasers     54
Effects of Spontaneous Emission in Gain- and Index-Guided Lasers     56
Laser Types     58
Theory of Optical Feedback in Semiconductor Lasers     63
Theory of Optical Feedback     63
Optical Feedback Effects and Classifications of Optical Feedback Phenomena     63
Theoretical Model     66
Linear Stability Analysis for Optical Feedback Systems      68
Linear Stability Analysis     68
Linear Mode, and Stability and Instability in Semiconductor Lasers     73
Gain Reduction Due to Optical Feedback     75
Linewidth in the Presence of Optical Feedback     76
Feedback from a Grating Mirror     77
Phase-Conjugate Feedback     79
Incoherent Feedback and Polarization-Rotated Optical Feedback     82
Incoherent Feedback     82
Polarization-Rotated Optical Feedback     83
Filtered Feedback     85
Dynamics of Semiconductor Lasers with Optical Feedback     87
Optical Feedback from a Conventional Reflector     87
Optical Feedback Effects     87
Potential Model in Feedback Induced Instability     88
Optical Spectrum in Stable and Unstable Feedback Regimes     90
Chaos in Semiconductor Lasers with Optical Feedback     93
Chaotic Bifurcations     95
Dynamics for Injection Current Variations     96
Dependence of Chaotic Dynamics on the External Mirror Position     101
Periodic Stability Enhancement for Variations of the External Cavity Length     101
Origin of Periodic Stability Enhancement     103
Effects of Linewidth Enhancement Factor      105
Sensitivity of the Optical Phase     107
Chaotic Dynamics for a Small Change of the External Cavity Length     109
Low-Frequency Fluctuations (LFFs)     112
Low-Frequency Fluctuation Phenomena     112
LFF Characteristics     115
Origin of LFFs     117
Chaotic Dynamics in Short External Cavity Limit     120
Stable and Unstable Conditions in Short External Cavity     120
Regular Pulse Package Oscillations in Short External Cavity     122
Bifurcations of Regular Pulse Package     124
Dynamics in Semiconductor Lasers with Grating Mirror Feedback     126
Dynamics in Semiconductor Lasers with Phase-Conjugate Mirror Feedback     129
Linear Stability Analysis     129
Dynamics Induced by Phase-Conjugate Feedback     131
Dynamics in the Presence of Frequency Detuning     132
Finite and Slow Response Phase-Conjugate Feedback     132
Dynamics of Semiconductor Lasers with Incoherent Optical Feedback     134
Dynamics of Incoherent Optical Feedback     134
Dynamics of Polarization-Rotated Optical Feedback     138
Dynamics of Filtered Optical Feedback     140
Filtered Optical Feedback     140
External Cavity Modes      142
Frequency Oscillations and Chaotic Dynamics     144
Dynamics in Semiconductor Lasers with Optical Injection     147
Optical Injection     147
Optical Injection Locking     147
Injection Locking Condition     150
Stability and Instability in Optical Injection Systems     152
Rate Equations     152
Chaotic Bifurcations by Optical Injection     153
Chaos Map in the Phase Space of Frequency Detuning and Injection     157
Coexistence of Chaotic Attractors in Optically Injected Semiconductor Lasers     161
Enhancement of Modulation Bandwidth and Generation of High Frequency Chaotic Oscillation by Strong Optical Injection     164
Enhancement of Modulation Bandwidth by Strong Optical Injection     164
Origin of Modulation Bandwidth Enhancement     168
Modulation Response by Strong Optical Injection     170
Suppression of Frequency Chirping by Strong Optical Injection     172
Generation of High Frequency Chaotic Oscillation by Strong Optical Injection     174
Dynamics of Semiconductor Lasers with Optoelectronic Feedback and Modulation     177
Theory of Optoelectronic Feedback     177
Optoelectronic Feedback Systems     177
Pulsation Oscillations in Optoelectronic Feedback Systems     179
Linear Stability Analysis for Optoelectronic Feedback Systems     182
Linear Stability Analysis     182
Characteristics of Semiconductor Lasers with Optoelectronic Feedback     185
Dynamics and Chaos in Semiconductor Lasers with Optoelectronic Feedback     187
Chaotic Dynamics in Negative Optoelectronic Feedback     187
Chaotic Dynamics in Positive Optoelectronic Feedback     189
Optoelectronic Feedback with Wavelength Filter     193
System of Optoelectronic Feedback with Wavelength Filter     193
Dynamics of Optoelectronic Feedback with Wavelength Filter     195
Chaotic Dynamics of Semiconductor Lasers Induced by Injection Current Modulation     198
Instabilities of a Modulated Semiconductor Laser     198
Linear Stability Analysis     200
Chaotic Dynamics in Modulated Semiconductor Lasers     204
Nonlinear Dynamics of Various Combinations of External Perturbations     206
Optically Injected Semiconductor Laser Subject to Optoelectronic Feedback     206
Semiconductor Lasers with Optical Feedback and Modulation     209
Instability and Chaos in Various Laser Structures     213
Multimode Lasers     213
Multimode Operation of Semiconductor Lasers     213
Theoretical Model of Multimode Lasers     214
Dynamics of Multimode Semiconductor Lasers with Optical Feedback     217
Self-Pulsating Lasers     220
Theory of Self-Pulsating Lasers     220
Instabilities at Solitary Oscillations     223
Instability and Chaos by Optical Feedback     227
Instability and Chaos by Injection Current Modulation     230
Vertical-Cavity Surface-Emitting Lasers (VCSELs)     232
Theoretical Model of Vertical-Cavity Surface-Emitting Lasers     232
Spin-Flip Model     235
Characteristics of VCSELs in Solitary Oscillations     239
Spatio-Temporal Dynamics in VCSELs     242
Feedback Effects in VCSELs     245
Short Optical Feedback in VCSELs     250
Orthogonal Optical Injection Dynamics in VCSEL     252
Broad Area Lasers     255
Theoretical Model of Broad Area Lasers     255
Dynamics of Broad Area Semiconductor Lasers at Solitary Oscillations     258
Feedback Effects in Broad Area Semiconductor Lasers     264
Laser Arrays     266
Chaos Control and Applications     269
General Methods of Chaos Control     269
OGY Method      269
Continuous Control Method     270
Occasional Proportional Method     271
Sinusoidal Modulation Method     272
Chaos Control in Semiconductor Lasers     273
Continuous Control     273
Occasional Proportional Feedback Control     275
Sinusoidal Modulation Control     276
Optical Control     279
Controlling Chaos and Noise Suppression     282
Noise Suppression by Sinusoidal Modulation     282
Stability and Instability of LFFs by Injection Current Modulation     286
Chaos Targeting     288
Stabilization of Semiconductor Lasers     291
Linewidth Narrowing by Optical Feedback     291
Linewidth Narrowing by Strong Optical Feedback     291
Linewidth Narrowing by Grating Feedback     294
Linewidth Narrowing by Phase-Conjugate Optical Feedback     295
Linewidth Narrowing by Resonant Optical Feedback     299
Linewidth Narrowing by Optoelectronic Feedback     301
Stabilization in Lasers with Various Structures     304
Noise Suppression in Self-Pulsation Semiconductor Laser     304
Stabilization of VCSELs     305
Stabilization of Broad-Area Semiconductor Lasers      308
Stabilization of Laser Arrays     312
Controls in Nobel Structure Lasers     313
Photonic VCSELs     313
Quantum-Dot Broad-Area Semiconductor Lasers     315
Stability and Bistability in Feedback Interferometers, and Their Applications     319
Optical Feedback Interferometers     319
Bistability and Multistability in Feedback Interferometers     319
Interferometric Measurement in Self-Mixing Semiconductor Lasers     323
Applications in Feedback Interferometer     325
Displacement and Vibration Measurement     325
Velocity Measurement     328
Absolute Position Measurement     329
Angle Measurement     330
Measurement of Linewidth and Linewidth Enhancement Factor     332
Active Feedback Interferometer     334
Stability and Bistability in Active Feedback Interferometer     334
Chaos Control in Active Feedback Interferometers     338
Chaos Synchronization in Semiconductor Lasers     341
Concept of Chaos Synchronization     341
Chaos Synchronization     341
Generalized and Complete Chaos Synchronization     344
Theory of Chaos Synchronization in Semiconductor Lasers with Optical Feedback      347
Model of Synchronization Systems     347
Rate Equations in Unidirectional Coupling Systems     349
Generalized Chaos Synchronization     350
Complete Chaos Synchronization     351
Mutual Coupling Systems     351
Chaos Synchronization in Semiconductor Lasers with an Optical Feedback System     353
Chaos Synchronization - Numerical Examples     353
Chaos Synchronization - Experimental Examples     357
Anticipating Chaos Synchronization     359
Bandwidth Enhanced Chaos Synchronization     360
Incoherent Synchronization Systems     362
Polarization Rotated Chaos Synchronization     364
Chaos Synchronization in Injected Lasers     367
Theory of Chaos Synchronization in Injected Lasers     367
Examples of Chaos Synchronization in Injected Lasers     369
Chaos Synchronization in Optoelectronic Feedback Systems     370
Theory of Chaos Synchronization in Optoelectronic Feedback Systems     370
Examples of Chaos Synchronization in Optoelectronic Feedback Systems     372
Chaos Synchronization in Injection Current Modulated Systems     373
Chaos Synchronization in Mutually Coupled Lasers     374
Chaos Synchronization of Semiconductor Lasers with Mutual Optical Coupling     374
Chaos Synchronization of Semiconductor Lasers with Mutual Optoelectronic Coupling     375
Chaotic Communications in Semiconductor Lasers     379
Message Encryption in a Chaotic Carrier and Its Decryption     379
Chaotic Communications     379
Chaos Masking     381
Chaos Modulation     383
Chaos Shift Keying     383
Chaotic Data Communications in Laser Systems     384
Cryptographic Applications in Optical Feedback Systems     385
Chaotic Communications in Optical Feedback Systems     385
Chaos Masking in Optical Feedback Systems     388
Chaos Modulation in Optical Feedback Systems     393
Chaos Shift Keying in Optical Feedback Systems     394
Chaotic Communications in Incoherent Optical Feedback Systems     396
Chaos Pass Filtering Effects     396
Cryptographic Applications in Optical Injection Systems     399
Cryptographic Applications in Optoelectonic Systems     401
Performance of Chaotic Communications     404
Security of Chaotic Communications     408
Chaotic Carrier and Bandwidth of Communications     410
Chaos Communications in the Real World      412
Chaos Masking Video Signal Transmissions     412
Chaotic Signal Transmissions through Public Data Link     414
Appendix: Chaos     419
Nonlinear Chaotic Systems     420
Discrete Systems     420
Continuous Systems     422
Delay Differential Systems     424
Analysis and Characteristic Descriptions for Chaotic Data     425
Phase Space, Attractor, and Poincare Map     425
Steady State Behaviors     427
Fractal Dimension and Correlation Dimension     430
Lyapunov Exponent     431
Chaos Control     432
Chaos Synchronization     437
References     441
Index     469
From the B&N Reads Blog

Customer Reviews