Semiconducting Silicon Nanowires for Biomedical Applications
In its second, extensively revised second edition, Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and biomedical applications of this key material.

The book begins by reviewing the basics of growth, characterization, biocompatibility, and surface modification of semiconducting silicon nanowires. Attention then turns to use of these structures for tissue engineering and delivery applications, followed by detection and sensing. Reflecting the evolution of this multidisciplinary subject, several new key topics are highlighted, including our understanding of the cell-nanowire interface, latest advances in associated morphologies (including silicon nanoneedles and nanotubes for therapeutic delivery), and significantly, the status of silicon nanowire commercialization in biotechnology.

Semiconducting Silicon Nanowires for Biomedical Applications is a comprehensive resource for biomaterials scientists who are focused on biosensors, drug delivery, and the next generation of nano-biotech platforms that require a detailed understanding of the cell-nanowire interface, along with researchers and developers in industry and academia who are concerned with nanoscale biomaterials, in particular electronically-responsive structures.

  • Reviews the growth, characterization, biocompatibility, and surface modification of semiconducting silicon nanowires
  • Describes silicon nanowires for tissue engineering and delivery applications, including cellular binding & internalization, tissue engineering scaffolds, mediated differentiation of stem cells, and silicon nanoneedles & nanotubes for delivery of small molecule / biologic-based therapeutics
  • Highlights the use of silicon nanowires for detection and sensing
  • Presents a detailed description of our current understanding of the cell-nanowire interface
  • Covers the current status of commercial development of silicon nanowire-based platforms
1116243077
Semiconducting Silicon Nanowires for Biomedical Applications
In its second, extensively revised second edition, Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and biomedical applications of this key material.

The book begins by reviewing the basics of growth, characterization, biocompatibility, and surface modification of semiconducting silicon nanowires. Attention then turns to use of these structures for tissue engineering and delivery applications, followed by detection and sensing. Reflecting the evolution of this multidisciplinary subject, several new key topics are highlighted, including our understanding of the cell-nanowire interface, latest advances in associated morphologies (including silicon nanoneedles and nanotubes for therapeutic delivery), and significantly, the status of silicon nanowire commercialization in biotechnology.

Semiconducting Silicon Nanowires for Biomedical Applications is a comprehensive resource for biomaterials scientists who are focused on biosensors, drug delivery, and the next generation of nano-biotech platforms that require a detailed understanding of the cell-nanowire interface, along with researchers and developers in industry and academia who are concerned with nanoscale biomaterials, in particular electronically-responsive structures.

  • Reviews the growth, characterization, biocompatibility, and surface modification of semiconducting silicon nanowires
  • Describes silicon nanowires for tissue engineering and delivery applications, including cellular binding & internalization, tissue engineering scaffolds, mediated differentiation of stem cells, and silicon nanoneedles & nanotubes for delivery of small molecule / biologic-based therapeutics
  • Highlights the use of silicon nanowires for detection and sensing
  • Presents a detailed description of our current understanding of the cell-nanowire interface
  • Covers the current status of commercial development of silicon nanowire-based platforms
235.0 In Stock
Semiconducting Silicon Nanowires for Biomedical Applications

Semiconducting Silicon Nanowires for Biomedical Applications

by Jeffery L. Coffer (Editor)
Semiconducting Silicon Nanowires for Biomedical Applications

Semiconducting Silicon Nanowires for Biomedical Applications

by Jeffery L. Coffer (Editor)

Paperback(2nd ed.)

$235.00 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Related collections and offers


Overview

In its second, extensively revised second edition, Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and biomedical applications of this key material.

The book begins by reviewing the basics of growth, characterization, biocompatibility, and surface modification of semiconducting silicon nanowires. Attention then turns to use of these structures for tissue engineering and delivery applications, followed by detection and sensing. Reflecting the evolution of this multidisciplinary subject, several new key topics are highlighted, including our understanding of the cell-nanowire interface, latest advances in associated morphologies (including silicon nanoneedles and nanotubes for therapeutic delivery), and significantly, the status of silicon nanowire commercialization in biotechnology.

Semiconducting Silicon Nanowires for Biomedical Applications is a comprehensive resource for biomaterials scientists who are focused on biosensors, drug delivery, and the next generation of nano-biotech platforms that require a detailed understanding of the cell-nanowire interface, along with researchers and developers in industry and academia who are concerned with nanoscale biomaterials, in particular electronically-responsive structures.

  • Reviews the growth, characterization, biocompatibility, and surface modification of semiconducting silicon nanowires
  • Describes silicon nanowires for tissue engineering and delivery applications, including cellular binding & internalization, tissue engineering scaffolds, mediated differentiation of stem cells, and silicon nanoneedles & nanotubes for delivery of small molecule / biologic-based therapeutics
  • Highlights the use of silicon nanowires for detection and sensing
  • Presents a detailed description of our current understanding of the cell-nanowire interface
  • Covers the current status of commercial development of silicon nanowire-based platforms

Product Details

ISBN-13: 9780128213513
Publisher: Elsevier Science
Publication date: 09/17/2021
Series: Woodhead Publishing Series in Biomaterials
Edition description: 2nd ed.
Pages: 440
Product dimensions: 6.00(w) x 9.00(h) x 0.90(d)

About the Author

Jeffery L. Coffer is a Professor in the Department of Chemistry and Biochemistry of Texas Christian University where he has been a member of the faculty since 1990. With a principal focus on silicon nanostructures for drug delivery and “smart” biomedical applications, his research group has investigated a variety of therapeutic targets using these platforms, including structures with anticancer, antibacterial, and anti-inflammatory relevance. Composites comprised of nanostructured Si and biocompatible polymers with utility for tissue engineering are also of interest. Coffer has authored more than 165 refereed publications, three patents, numerous book chapters, and received multiple awards, including the Chancellor’s Award for Distinguished Achievement as a Teacher–Scholar and the Wilfred T. Doherty Award for Research (American Chemical Society).

Table of Contents

Part I: Introduction to silicon nanowires for biomedical applications: Synthesis and fundamental properties 1. Overview of semiconducting silicon nanowires for biomedical applications 2. Growth and characterization of semiconducting silicon nanowires for biomedical applications 3. Surface modification of semiconducting silicon nanowires for biosensing applications 4. Biocompatibility of semiconducting silicon nanowires

Part II: Silicon nanowires for delivery and tissue engineering applications 5. Functional semiconducting silicon nanowires for cellular binding and internalization 6. Functional semiconducting silicon nanowires and their composites as tissue scaffolds 7. Mediated differentiation of stem cells by engineered semiconducting silicon nanowires 8. Nanoneedles devices for biomedicine 9. Therapeutic platforms based on silicon nanotubes 10. Silicon nanowires as spatially-defined therapeutics

Part III: Silicon nanowires for detection and sensing 11. Semiconducting silicon nanowire array fabrication for high throughput screening in the biosciences 12. Nanostructured silicon for biological modulation 13. CMOS-compatible silicon nanowire field-effect transistors: Where nanotechnology pushes the limits in biosensing 14. Silicon nanowire composites for biosensing and therapy

Part IV: Future opportunities and challenges 15. The competition: non-silicon nanowire/nanotube strategies in nanomedicine 16. Commercialization of silicon nanowire-based biotechnologies

What People are Saying About This

From the Publisher

Explore this cutting-edge technology for biosensors, drug delivery, and tissue engineering

From the B&N Reads Blog

Customer Reviews