Selected Topics of the Theory of Chemical Elementary Processes
Introduction 1 1. 2. Basic Concepts and Phenomenological Description 6 2.1. Separation of the Center-of-Mass Motion 8 2.2. Separation of Electronic and Nuclear Motions. Interaction Potentials (Potential-Energy Surfaces) 11 2.2.1. Heuristic Considerations 11 2.2.2. Born-Oppenheimer Separation. Adiabatic Approximation, 16 Present State of Potential-Energy-Burface 2.2.3. Calculations 23 2.3. Scattering Channels ~6 2.4. Classification of Elementary Processes. Microscopic Mechanism 27 D.ynamics of Atomic and Molecular Collisions: 3. Electronically Adiabatic Processes 32 Classical Approach 3.1. 33 Some Arguments for the Reliability of the Classical Approach 33 Atom-Atom Collisions. Elastic Scattering 34 Quasiclassical Treatment of Elementary Processes in Triatomic Systems: Inelastic and Reactive Scattering 44 IV Examples of Results of Trajectory Calculations 59 3.1.4. 64 Elements of Quantum-Mechanical Methods 3.2. Correspondence of Classical and Quantum­ 3.2.1. 64 Mechanical Theories Time-Dependent Scattering Theory 71 3.2.2. Stationary Scattering Theory 77 3.2.3. One-Dimensional Scattering 78 3.2.3.1 • Three-Dimensional Elastic Scattering 83 3.2.3.2. Rearrangement Scattering (Reactions) 85 3.2.3.3. Examples of Quantum-Mechanical Calculations 3.2.4.
"1000910243"
Selected Topics of the Theory of Chemical Elementary Processes
Introduction 1 1. 2. Basic Concepts and Phenomenological Description 6 2.1. Separation of the Center-of-Mass Motion 8 2.2. Separation of Electronic and Nuclear Motions. Interaction Potentials (Potential-Energy Surfaces) 11 2.2.1. Heuristic Considerations 11 2.2.2. Born-Oppenheimer Separation. Adiabatic Approximation, 16 Present State of Potential-Energy-Burface 2.2.3. Calculations 23 2.3. Scattering Channels ~6 2.4. Classification of Elementary Processes. Microscopic Mechanism 27 D.ynamics of Atomic and Molecular Collisions: 3. Electronically Adiabatic Processes 32 Classical Approach 3.1. 33 Some Arguments for the Reliability of the Classical Approach 33 Atom-Atom Collisions. Elastic Scattering 34 Quasiclassical Treatment of Elementary Processes in Triatomic Systems: Inelastic and Reactive Scattering 44 IV Examples of Results of Trajectory Calculations 59 3.1.4. 64 Elements of Quantum-Mechanical Methods 3.2. Correspondence of Classical and Quantum­ 3.2.1. 64 Mechanical Theories Time-Dependent Scattering Theory 71 3.2.2. Stationary Scattering Theory 77 3.2.3. One-Dimensional Scattering 78 3.2.3.1 • Three-Dimensional Elastic Scattering 83 3.2.3.2. Rearrangement Scattering (Reactions) 85 3.2.3.3. Examples of Quantum-Mechanical Calculations 3.2.4.
54.99 In Stock
Selected Topics of the Theory of Chemical Elementary Processes

Selected Topics of the Theory of Chemical Elementary Processes

Selected Topics of the Theory of Chemical Elementary Processes

Selected Topics of the Theory of Chemical Elementary Processes

Paperback

$54.99 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Related collections and offers


Overview

Introduction 1 1. 2. Basic Concepts and Phenomenological Description 6 2.1. Separation of the Center-of-Mass Motion 8 2.2. Separation of Electronic and Nuclear Motions. Interaction Potentials (Potential-Energy Surfaces) 11 2.2.1. Heuristic Considerations 11 2.2.2. Born-Oppenheimer Separation. Adiabatic Approximation, 16 Present State of Potential-Energy-Burface 2.2.3. Calculations 23 2.3. Scattering Channels ~6 2.4. Classification of Elementary Processes. Microscopic Mechanism 27 D.ynamics of Atomic and Molecular Collisions: 3. Electronically Adiabatic Processes 32 Classical Approach 3.1. 33 Some Arguments for the Reliability of the Classical Approach 33 Atom-Atom Collisions. Elastic Scattering 34 Quasiclassical Treatment of Elementary Processes in Triatomic Systems: Inelastic and Reactive Scattering 44 IV Examples of Results of Trajectory Calculations 59 3.1.4. 64 Elements of Quantum-Mechanical Methods 3.2. Correspondence of Classical and Quantum­ 3.2.1. 64 Mechanical Theories Time-Dependent Scattering Theory 71 3.2.2. Stationary Scattering Theory 77 3.2.3. One-Dimensional Scattering 78 3.2.3.1 • Three-Dimensional Elastic Scattering 83 3.2.3.2. Rearrangement Scattering (Reactions) 85 3.2.3.3. Examples of Quantum-Mechanical Calculations 3.2.4.

Product Details

ISBN-13: 9783540087687
Publisher: Springer Berlin Heidelberg
Publication date: 07/11/1978
Series: Lecture Notes in Chemistry , #8
Pages: 176
Product dimensions: 6.10(w) x 9.25(h) x 0.02(d)

Table of Contents

1. Introduction.- 2. Basic Concepts and Phenomenological Description.- 2.1. Separation of the Center-of-Mass Motion.- 2.2. Separation of Electronic and Nuclear Motions. Interaction Potentials (Potential-Energy Surfaces).- 2.3. Scattering Channels.- 2.4. Classification of Elementary Processes. Microscopic Mechanism.- 3. Dynamics of Atomic and Molecular Collisions: Electronically Adiabatic Processes.- 3.1. Classical Approach.- 3.2. Elements of Quantum-Mechanical Methods.- 4. Classical-Limit and Semiclassical Approaches to the Calculation of Molecular Collisional Transition Probabilities.- 4.1. Classical S-Matrix Method.- 4.2. The Semiclassical Approach.- 4.3. Calculation of Transition Probabilities Using the Correspondence Principle.- 5. Theory of Non-Adiabatic Transitions in Atomic and Molecular Collision Processes.- 5.1. Crossing and Pseudo-Crossing of Potential-Energy Surfaces.- 5.2. Non-Adiabatic Coupling and Selection Rules.- 5.3. The Two-State Problem in Adiabatic and Diabatic Representations.- 5.4. The Landau-Zener Model.- Appendix: Transformation of the Hamiltonian to Center-of-Mass and Relative Coordinates.- Literature.
From the B&N Reads Blog

Customer Reviews