Response Curves for Phosphorus Plume Lengths from Reactive-Solute-Transport Simulations of Onland Disposal of Wastewater in Noncarbonate Sand and Gravel Aquifers

Response Curves for Phosphorus Plume Lengths from Reactive-Solute-Transport Simulations of Onland Disposal of Wastewater in Noncarbonate Sand and Gravel Aquifers

by John A. Colman
Response Curves for Phosphorus Plume Lengths from Reactive-Solute-Transport Simulations of Onland Disposal of Wastewater in Noncarbonate Sand and Gravel Aquifers

Response Curves for Phosphorus Plume Lengths from Reactive-Solute-Transport Simulations of Onland Disposal of Wastewater in Noncarbonate Sand and Gravel Aquifers

by John A. Colman

eBook

$2.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers

LEND ME® See Details

Overview

Surface-water resources in Massachusetts often are affected by eutrophication, excessive plant growth, which has resulted in impaired use for a majority of the freshwater ponds and lakes and a substantial number of river-miles in the State. Because supply of phosphorus usually is limiting to plant growth in freshwater systems, control of phosphorus input to surface waters is critical to solving the impairment problem. Wastewater is a substantial source of phosphorus for surface water, and removal of phosphorus before disposal may be necessary. Wastewater disposed onland by infiltration loses phosphorus from the dissolved phase during transport through the subsurface and may be an effective disposal method; quantification of the phosphorus loss can be simulated to determine disposal feasibility. In 2003, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, initiated a project to simulate distance of phosphorus transport in the subsurface for plausible conditions of onland wastewater disposal and subsurface properties. A coupled one-dimensional unsaturated-zone and three-dimensional saturated-zone reactive-solute-transport model (PHAST) was used to simulate lengths of phosphorus plumes. Knowledge of phosphorus plume length could facilitate estimates of setback distances for wastewater-infiltration sites from surface water that would be sufficient to protect the surface water from eutrophication caused by phosphorus transport through the subsurface and ultimate discharge to surface water.

Product Details

BN ID: 2940014396257
Publisher: The Delano Max Wealth Institute, LLC.
Publication date: 05/02/2012
Sold by: Barnes & Noble
Format: eBook
File size: 5 MB
From the B&N Reads Blog

Customer Reviews