Real-Time Quantum Dynamics of Electron-Phonon Systems
This book develops a methodology for the real-time coupled quantum dynamics of electrons and phonons in nanostructures, both isolated structures and those open to an environment. It then applies this technique to both fundamental and practical problems that are relevant, in particular, to nanodevice physics, laser–matter interaction, and radiation damage in living tissue.

The interaction between electrons and atomic vibrations (phonons) is an example of how a process at the heart of quantum dynamics can impact our everyday lives. This is e.g. how electrical current generates heat, making your toaster work. It is also a key process behind many crucial problems down to the atomic and molecular scale, such as the functionality of nanoscale electronic devices, the relaxation of photo-excited systems, the energetics of systems under irradiation, and thermoelectric effects. Electron–phonon interactions represent a difficult many-body problem. Fairly standard techniques are available for tackling cases in which one of the two subsystems can be treated as a steady-state bath for the other, but determining the simultaneous coupled dynamics of the two poses a real challenge. This book tackles precisely this problem.

1133188103
Real-Time Quantum Dynamics of Electron-Phonon Systems
This book develops a methodology for the real-time coupled quantum dynamics of electrons and phonons in nanostructures, both isolated structures and those open to an environment. It then applies this technique to both fundamental and practical problems that are relevant, in particular, to nanodevice physics, laser–matter interaction, and radiation damage in living tissue.

The interaction between electrons and atomic vibrations (phonons) is an example of how a process at the heart of quantum dynamics can impact our everyday lives. This is e.g. how electrical current generates heat, making your toaster work. It is also a key process behind many crucial problems down to the atomic and molecular scale, such as the functionality of nanoscale electronic devices, the relaxation of photo-excited systems, the energetics of systems under irradiation, and thermoelectric effects. Electron–phonon interactions represent a difficult many-body problem. Fairly standard techniques are available for tackling cases in which one of the two subsystems can be treated as a steady-state bath for the other, but determining the simultaneous coupled dynamics of the two poses a real challenge. This book tackles precisely this problem.

74.49 In Stock
Real-Time Quantum Dynamics of Electron-Phonon Systems

Real-Time Quantum Dynamics of Electron-Phonon Systems

by Valerio Rizzi
Real-Time Quantum Dynamics of Electron-Phonon Systems

Real-Time Quantum Dynamics of Electron-Phonon Systems

by Valerio Rizzi

eBook1st ed. 2018 (1st ed. 2018)

$74.49  $99.00 Save 25% Current price is $74.49, Original price is $99. You Save 25%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

This book develops a methodology for the real-time coupled quantum dynamics of electrons and phonons in nanostructures, both isolated structures and those open to an environment. It then applies this technique to both fundamental and practical problems that are relevant, in particular, to nanodevice physics, laser–matter interaction, and radiation damage in living tissue.

The interaction between electrons and atomic vibrations (phonons) is an example of how a process at the heart of quantum dynamics can impact our everyday lives. This is e.g. how electrical current generates heat, making your toaster work. It is also a key process behind many crucial problems down to the atomic and molecular scale, such as the functionality of nanoscale electronic devices, the relaxation of photo-excited systems, the energetics of systems under irradiation, and thermoelectric effects. Electron–phonon interactions represent a difficult many-body problem. Fairly standard techniques are available for tackling cases in which one of the two subsystems can be treated as a steady-state bath for the other, but determining the simultaneous coupled dynamics of the two poses a real challenge. This book tackles precisely this problem.


Product Details

ISBN-13: 9783319962801
Publisher: Springer-Verlag New York, LLC
Publication date: 08/01/2018
Series: Springer Theses
Sold by: Barnes & Noble
Format: eBook
File size: 9 MB

Table of Contents

Physical Motivation.- Effective Temperature Methods.- Atomistic Methods.- The ECEID Method.- ECEID Validation.- Thermalization with ECEID.- Inelastic Electron Injection in Water.- A New Development: ECEID xp.

From the B&N Reads Blog

Customer Reviews