Reaction Engineering Principles

Chemical reaction engineering is at the core of chemical engineering education. Unfortunately, the subject can be intimidating to students, because it requires a heavy dose of mathematics. These mathematics, unless suitably explained in the context of the physical phenomenon, can confuse rather than enlighten students. Bearing this in mind, Reaction Engineering Principles is written primarily from a student’s perspective. It is the culmination of the author’s more than twenty years of experience teaching chemical reaction engineering.

The textbook begins by covering the basic building blocks of the subject—stoichiometry, kinetics, and thermodynamics—ensuring students gain a good grasp of the essential concepts before venturing into the world of reactors.

The design and performance evaluation of reactors are conveniently grouped into chapters based on an increasing degree of difficulty. Accordingly, isothermal reactors—batch and ideal flow types—are addressed first, followed by non-isothermal reactor operation, non-ideal flow in reactors, and some special reactor types.

For better comprehension, detailed derivations are provided for all important mathematical equations. Narrative of the physical context in which the formulae work adds to the clarity of thought. The use of mathematical formulae is elaborated upon in the form of problem solving steps followed by worked examples. Effects of parameters, changing trends, and comparisons between different situations are presented graphically. Self-practice exercises are included at the end of each chapter.

1133705668
Reaction Engineering Principles

Chemical reaction engineering is at the core of chemical engineering education. Unfortunately, the subject can be intimidating to students, because it requires a heavy dose of mathematics. These mathematics, unless suitably explained in the context of the physical phenomenon, can confuse rather than enlighten students. Bearing this in mind, Reaction Engineering Principles is written primarily from a student’s perspective. It is the culmination of the author’s more than twenty years of experience teaching chemical reaction engineering.

The textbook begins by covering the basic building blocks of the subject—stoichiometry, kinetics, and thermodynamics—ensuring students gain a good grasp of the essential concepts before venturing into the world of reactors.

The design and performance evaluation of reactors are conveniently grouped into chapters based on an increasing degree of difficulty. Accordingly, isothermal reactors—batch and ideal flow types—are addressed first, followed by non-isothermal reactor operation, non-ideal flow in reactors, and some special reactor types.

For better comprehension, detailed derivations are provided for all important mathematical equations. Narrative of the physical context in which the formulae work adds to the clarity of thought. The use of mathematical formulae is elaborated upon in the form of problem solving steps followed by worked examples. Effects of parameters, changing trends, and comparisons between different situations are presented graphically. Self-practice exercises are included at the end of each chapter.

120.49 In Stock
Reaction Engineering Principles

Reaction Engineering Principles

by Himadri Roy Ghatak
Reaction Engineering Principles

Reaction Engineering Principles

by Himadri Roy Ghatak

eBook

$120.49  $160.00 Save 25% Current price is $120.49, Original price is $160. You Save 25%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Chemical reaction engineering is at the core of chemical engineering education. Unfortunately, the subject can be intimidating to students, because it requires a heavy dose of mathematics. These mathematics, unless suitably explained in the context of the physical phenomenon, can confuse rather than enlighten students. Bearing this in mind, Reaction Engineering Principles is written primarily from a student’s perspective. It is the culmination of the author’s more than twenty years of experience teaching chemical reaction engineering.

The textbook begins by covering the basic building blocks of the subject—stoichiometry, kinetics, and thermodynamics—ensuring students gain a good grasp of the essential concepts before venturing into the world of reactors.

The design and performance evaluation of reactors are conveniently grouped into chapters based on an increasing degree of difficulty. Accordingly, isothermal reactors—batch and ideal flow types—are addressed first, followed by non-isothermal reactor operation, non-ideal flow in reactors, and some special reactor types.

For better comprehension, detailed derivations are provided for all important mathematical equations. Narrative of the physical context in which the formulae work adds to the clarity of thought. The use of mathematical formulae is elaborated upon in the form of problem solving steps followed by worked examples. Effects of parameters, changing trends, and comparisons between different situations are presented graphically. Self-practice exercises are included at the end of each chapter.


Product Details

ISBN-13: 9781498758611
Publisher: CRC Press
Publication date: 09/03/2018
Sold by: Barnes & Noble
Format: eBook
Pages: 308
File size: 8 MB

About the Author

Himadri Roy Ghatak earned his BE and ME degrees from the erstwhile University of Roorkee (now Indian Institute of Technology Roorkee) and his PhD from Sant Longowal Institute of Engineering and Technology. He worked in the industry from 1991 to 1995 before joining the faculty of Sant Longowal Institute of Engineering and Technology, where he rose to the position of a professor in chemical engineering. He also served as the head of the Department of Chemical Engineering, and associate dean (research and consultancy). He has taught courses in chemical reaction engineering, mass transfer, environmental engineering, and energy technology. Professor Ghatak’s research focuses on electrochemical advanced oxidation, hydrogen production, and lignin.

Table of Contents

Introduction. Stoichiometry. Chemical Kinetics. Thermodynamics of Chemical Reaction. Ideal Isothermal Batch Reactor. Ideal Isothermal Flow Reactors. Nonisothermal Reactors. Nonideal Flow in Reactors. Reactors of Special Types. Appendices.

From the B&N Reads Blog

Customer Reviews