Quantum Theory and Measurement

Quantum Theory and Measurement

Quantum Theory and Measurement

Quantum Theory and Measurement

Paperback(New Edition)

$167.00 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Related collections and offers


Overview

The forty-nine papers collected here illuminate the meaning of quantum theory as it is disclosed in the measurement process. Together with an introduction and a supplemental annotated bibliography, they discuss issues that make quantum theory, overarching principle of twentieth-century physics, appear to many to prefigure a new revolution in science.

Originally published in 1983.

The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.


Product Details

ISBN-13: 9780691613161
Publisher: Princeton University Press
Publication date: 07/14/2014
Series: Princeton Series in Physics , #4751
Edition description: New Edition
Pages: 842
Product dimensions: 8.10(w) x 10.00(h) x 1.90(d)

Read an Excerpt

Quantum Theory and Measurement


By John Archibald Wheeler, Wojciech Hubert Zurek

PRINCETON UNIVERSITY PRESS

Copyright © 1983 Princeton University Press
All rights reserved.
ISBN: 978-0-691-08316-2



CHAPTER 1

DISCUSSION WITH EINSTEIN ON EPISTEMOLOGICAL PROBLEMS IN ATOMIC PHYSICS

Niels Bohr


WHEN invited by the Editor of the series, "Living Philosophers," to write an article for this volume in which contemporary scientists are honouring the epoch-making contributions of Albert Einstein to the progress of natural philosophy and are acknowledging the indebtedness of our whole generation for the guidance his genius has given us, I thought much of the best way of explaining how much I owe to him for inspiration. In this connection, the many occasions through the years on which I had the privilege to discuss with Einstein epistemological problems raised by the modern development of atomic physics have come back vividly to my mind and I have felt that I could hardly attempt anything better than to give an account of these discussions which, even if no complete concord has so far been obtained, have been of greatest value and stimulus to me. I hope also that the account may convey to wider circles an impression of how essential the open-minded exchange of ideas has been for the progress in a field where new experience has time after time demanded a reconsideration of our views.


* * *

From the very beginning the main point under debate has been the attitude to take to the departure from customary principles of natural philosophy characteristic of the novel development of physics which was initiated in the first year of this century by Planck's discovery of the universal quantum of action. This discovery, which revealed a feature of atomicity in the laws of nature going far beyond the old doctrine of the limited divisibility of matter, has indeed taught us that the classical theories of physics are idealizations which can be unambiguously applied only in the limit where all actions involved are large compared with the quantum. The question at issue has been whether the renunciation of a causal mode of description of atomic processes involved in the endeavours to cope with the situation should be regarded as a temporary departure from ideals to be ultimately revived or whether we are faced with an irrevocable step towards obtaining the proper harmony between analysis and synthesis of physical phenomena. To describe the background of our discussions and to bring out as clearly as possible the arguments for the contrasting viewpoints, I have felt it necessary to go to a certain length in recalling some main features of the development to which Einstein himself has contributed so decisively.

As is well known, it was the intimate relation, elucidated primarily by Boltzmann, between the laws of thermodynamics and the statistical regularities exhibited by mechanical systems with many degrees of freedom, which guided Planck in his ingenious treatment of the problem of thermal radiation, leading him to his fundamental discovery. While, in his work, Planck was principally concerned with considerations of essentially statistical character and with great caution refrained from definite conclusions as to the extent to which the existence of the quantum implied a departure from the foundations of mechanics and electrodynamics, Einstein's great original contribution to quantum theory (1905) was just the recognition of how physical phenomena like the photo-effect may depend directly on individual quantum effects. In these very same years when, in developing his theory of relativity, Einstein laid a new foundation for physical science, he explored with a most daring spirit the novel features of atomicity which pointed beyond the whole framework of classical physics.

With unfailing intuition Einstein thus was led step by step to the conclusion that any radiation process involves the emission or absorption of individual light quanta or "photons" with energy and momentum

E = hv and P = hσ (1)

respectively, where h is Planck's constant, while v and σ are the number of vibrations per unit time and the number of waves per unit length, respectively. Notwithstanding its fertility, the idea of the photon implied a quite unforeseen dilemma, since any simple corpuscular picture of radiation would obviously be irreconcilable with interference effects, which present so essential an aspect of radiative phenomena, and which can be described only in terms of a wave picture. The acuteness of the dilemma is stressed by the fact that the interference effects offer our only means of defining the concepts of frequency and wavelength entering into the very expressions for the energy and momentum of the photon.

In this situation, there could be no question of attempting a causal analysis of radiative phenomena, but only, by a combined use of the contrasting pictures, to estimate probabilities for the occurrence of the individual radiation processes. However, it is most important to realize that the recourse to probability laws under such circumstances is essentially different in aim from the familiar application of statistical considerations as practical means of accounting for the properties of mechanical systems of great structural complexity. In fact, in quantum physics we are presented not with intricacies of this kind, but with the inability of the classical frame of concepts to comprise the peculiar feature of indivisibility, or "individuality," characterizing the elementary processes.

The failure of the theories of classical physics in accounting for atomic phenomena was further accentuated by the progress of our knowledge of the structure of atoms. Above all, Rutherford's discovery of the atomic nucleus (1911) revealed at once the inadequacy of classical mechanical and electromagnetic concepts to explain the inherent stability of the atom. Here again the quantum theory offered a clue for the elucidation of the situation and especially it was found possible to account for the atomic stability, as well as for the empirical laws governing the spectra of the elements, by assuming that any reaction of the atom resulting in a change of its energy involved a complete transition between two so-called stationary quantum states and that, in particular, the spectra were emitted by a step-like process in which each transition is accompanied by the emission of a monochromatic light quantum of an energy just equal to that of an Einstein photon.

These ideas, which were soon confirmed by the experiments of Franck and Hertz (1914) on the excitation of spectra by impact of electrons on atoms, involved a further renunciation of the causal mode of description, since evidently the interpretation of the spectral laws implies that an atom in an excited state in general will have the possibility of transitions with photon emission to one or another of its lower energy states. In fact, the very idea of stationary states is incompatible with any directive for the choice between such transitions and leaves room only for the notion of the relative probabilities of the individual transition processes. The only guide in estimating such probabilities was the so-called correspondence principle which originated in the search for the closest possible connection between the statistical account of atomic processes and the consequences to be expected from classical theory, which should be valid in the limit where the actions involved in all stages of the analysis of the phenomena are large compared with the universal quantum.

At that time, no general self-consistent quantum theory was yet in sight, but the prevailing attitude may perhaps be illustrated by the following passage from a lecture by the writer from 1913:

I hope that I have expressed myself sufficiently clearly so that you may appreciate the extent to which these considerations conflict with the admirably consistent scheme of conceptions which has been rightly termed the classical theory of electrodynamics. On the other hand, I have tried to convey to you the impression that — just by emphasizing so strongly this conflict — it may also be possible in course of time to establish a certain coherence in the new ideas.

Important progress in the development of quantum theory was made by Einstein himself in his famous article on radiative equilibrium in 1917, where he showed that Planck's law for thermal radiation could be simply deduced from assumptions conforming with the basic ideas of the quantum theory of atomic constitution. To this purpose, Einstein formulated general statistical rules regarding the occurrence of radiative transitions between stationary states, assuming not only that, when the atom is exposed to a radiation field, absorption as well as emission processes will occur with a probability per unit time proportional to the intensity of the irradiation, but that even in the absence of external disturbances spontaneous emission processes will take place with a rate corresponding to a certain a priori probability. Regarding the latter point, Einstein emphasized the fundamental character of the statistical description in a most suggestive way by drawing attention to the analogy between the assumptions regarding the occurrence of the spontaneous radiative transitions and the well-known laws governing transformations of radioactive substances.

In connection with a thorough examination of the exigencies of thermodynamics as regards radiation problems, Einstein stressed the dilemma still further by pointing out that the argumentation implied that any radiation process was "unidirected" in the sense that not only is a momentum corresponding to a photon with the direction of propagation transferred to an atom in the absorption process, but that also the emitting atom will receive an equivalent impulse in the opposite direction, although there can on the wave picture be no question of a preference for a single direction in an emission process. Einstein's own attitude to such startling conclusions is expressed in a passage at the end of the article (loc. cit., p. 127 f.), which may be translated as follows:

These features of the elementary processes would seem to make the development of a proper quantum treatment of radiation almost unavoidable. The weakness of the theory lies in the fact that, on the one hand, no closer connection with the wave concepts is obtainable and that, on the other hand, it leaves to chance (Zufall) the time and the direction of the elementary processes; nevertheless, I have full confidence in the reliability of the way entered upon.

When I had the great experience of meeting Einstein for the first time during a visit to Berlin in 1920, these fundamental questions formed the theme of our conversations. The discussions, to which I have often reverted in my thoughts, added to all my admiration for Einstein a deep impression of his detached attitude. Certainly, his favoured use of such picturesque phrases as "ghost waves (Gespensterfelder) guiding the photons" implied no tendency to mysticism, but illuminated rather a profound humour behind his piercing remarks. Yet, a certain difference in attitude and outlook remained, since, with his mastery for co-ordinating apparently contrasting experience without abandoning continuity and causality, Einstein was perhaps more reluctant to renounce such ideals than someone for whom renunciation in this respect appeared to be the only way open to proceed with the immediate task of co-ordinating the multifarious evidence regarding atomic phenomena, which accumulated from day to day in the exploration of this new field of knowledge.

* * *

In the following years, during which the atomic problems attracted the attention of rapidly increasing circles of physicists, the apparent contradictions inherent in quantum theory were felt ever more acutely. Illustrative of this situation is the discussion raised by the discovery of the Stern-Gerlach effect in 1922. On the one hand, this effect gave striking support to the idea of stationary states and in particular to the quantum theory of the Zeeman effect developed by Sommerfeld; on the other hand, as exposed so clearly by Einstein and Ehrenfest, it presented with unsurmountable difficulties any attempt at forming a picture of the behaviour of atoms in a magnetic field. Similar paradoxes were raised by the discovery by Compton (1924) of the change in wave-length accompanying the scattering of X-rays by electrons. This phenomenon afforded, as is well known, a most direct proof of the adequacy of Einstein's view regarding the transfer of energy and momentum in radiative processes; at the same time, it was equally clear that no simple picture of a corpuscular collision could offer an exhaustive description of the phenomenon. Under the impact of such difficulties, doubts were for a time entertained even regarding the conservation of energy and momentum in the individual radiation processes; a view, however, which very soon had to be abandoned in face of more refined experiments bringing out the correlation between the deflection of the photon and the corresponding electron recoil.

The way to the clarification of the situation was, indeed, first to be paved by the development of a more comprehensive quantum theory. A first step towards this goal was the recognition by de Broglie in 1925 that the wave-corpuscle duality was not confined to the properties of radiation, but was equally unavoidable in accounting for the behaviour of material particles. This idea, which was soon convincingly confirmed by experiments on electron interference phenomena, was at once greeted by Einstein, who had already envisaged the deep-going analogy between the properties of thermal radiation and of gases in the so-called degenerate state. The new line was pursued with the greatest success by Schrodinger (1926) who, in particular, showed how the stationary states of atomic systems could be represented by the proper solutions of a wave-equation to the establishment of which he was led by the formal analogy, originally traced by Hamilton, between mechanical and optical problems. Still, the paradoxical aspects of quantum theory were in no way ameliorated, but even emphasized, by the apparent contradiction between the exigencies of the general superposition principle of the wave description and the feature of individuality of the elementary atomic processes.

At the same time, Heisenberg (1925) had laid the foundation of a rational quantum mechanics, which was rapidly developed through important contributions by Born and Jordan as well as by Dirac. In this theory, a formalism is introduced, in which the kinematical and dynamical variables of classical mechanics are replaced by symbols subjected to a non-commutative algebra. Notwithstanding the renunciation of orbital pictures, Hamilton's canonical equations of mechanics are kept unaltered and Planck's constant enters only in the rules of commutation

qp - pq = [square root of -1] h/2π (2)

holding for any set of conjugate variables q and p. Through a representation of the symbols by matrices with elements referring to transitions between stationary states, a quantitative formulation of the correspondence principle became for the first time possible. It may here be recalled that an important preliminary step towards this goal was reached through the establishment, especially by contributions of Kramers, of a quantum theory of dispersion making basic use of Einstein's general rules for the probability of the occurrence of absorption and emission processes.

This formalism of quantum mechanics was soon proved by Schrodinger to give results identical with those obtainable by the mathematically often more convenient methods of wave theory, and in the following years general methods were gradually established for an essentially statistical description of atomic processes combining the features of individuality and the requirements of the superposition principle, equally characteristic of quantum theory. Among the many advances in this period, it may especially be mentioned that the formalism proved capable of incorporating the exclusion principle which governs the states of systems with several electrons, and which already before the advent of quantum mechanics had been derived by Pauli from an analysis of atomic spectra. The quantitative comprehension of a vast amount of empirical evidence could leave no doubt as to the fertility and adequacy of the quantum-mechanical formalism, but its abstract character gave rise to a widespread feeling of uneasiness. An elucidation of the situation should, indeed, demand a thorough examination of the very observational problem in atomic physics.


(Continues...)

Excerpted from Quantum Theory and Measurement by John Archibald Wheeler, Wojciech Hubert Zurek. Copyright © 1983 Princeton University Press. Excerpted by permission of PRINCETON UNIVERSITY PRESS.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Table of Contents

  • FrontMatter, pg. i
  • Bohr And Einstein In Dialogue, pg. v
  • Contents, pg. xi
  • Preface, pg. xv
  • Acknowledgments And Copyright Information, pg. xxi
  • I. Questions of Principle, pg. 1
  • II. Interpretations of The Act of Measurement, pg. 215
  • III. "Hidden Variables" Versus "Phenomenon" and Complementarity, pg. 351
  • IV. Field Measurements, pg. 463
  • V. Irreversibility And Quantum Theory, pg. 535
  • VI. Accuracy of Measurements: Quantum Limitations, pg. 697
  • Guide to some further Literature, pg. 769
  • Bibliography, pg. 787



From the B&N Reads Blog

Customer Reviews