Oxygenases and Model Systems / Edition 1

Oxygenases and Model Systems / Edition 1

by T. Funabiki
ISBN-10:
0792342402
ISBN-13:
9780792342403
Pub. Date:
12/31/1996
Publisher:
Springer Netherlands
ISBN-10:
0792342402
ISBN-13:
9780792342403
Pub. Date:
12/31/1996
Publisher:
Springer Netherlands
Oxygenases and Model Systems / Edition 1

Oxygenases and Model Systems / Edition 1

by T. Funabiki

Hardcover

$219.99
Current price is , Original price is $219.99. You
$219.99 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Overview

Oxygenases have been the subject of much study and are of great interest and application. Biomimetic chemistry of oxygenases has yielded clarification of enzyme structures and reaction mechanisms and has also led to the development of synthetic oxygenation processes. This volume contains 8 chapters written by leading researchers which together present an overview of di- and mono-oxygenases and their model systems from the point of view of functions, structures and mechanisms. An up-to-date clarification of structures around active centres of heme- and nonheme-oxygenases is given with reference to the design of model complexes. Various contributions also discuss in detail the formation, structure and reactivity of metal-oxygen and metal-substrate species in both enzyme and model systems. The contents of the volume address the interface between bioinorganic chemistry and homogeneous catalysis and contains much to emphasize the importance of catalytic studies in bio- and biomimetic chemistry.
Audience: Research chemists interested in the use of oxygenases in catalysis.

Product Details

ISBN-13: 9780792342403
Publisher: Springer Netherlands
Publication date: 12/31/1996
Series: Catalysis by Metal Complexes , #19
Edition description: 1997
Pages: 393
Product dimensions: 5.98(w) x 9.02(h) x 0.04(d)

Table of Contents

1. Introduction — Developments in Enzymatic and Model Studies on Oxygenases.- 1.1. Oxygenases.- 1.2. Oxygenase model s.- 1.3. Biomimetic chemistry and bioinspired catalysis.- 1.4. References.- 2. Dioxygenases.- 2.1. Introduction.- 2.2. Catechol dioxygenases.- 2.3. Other double bond cleaving dioxygenases.- 2.4. Other dioxygenases.- 2.5. Supplement for extradiol cleaving catechol dioxygenases.- 2.6. Concluding remarks.- 2.7. References.- 3. Iron Model Studies on Dioxygenases.- 3.1. Introduction.- 3.2. Catechol dioxygenases.- 3.3. Tryptophan 2,3-dioxygenase.- 3.4. Lipoxygenases.- 3.5.—-Keto acid-dependent dioxygenases.- 3.6. Supplement for catechol dioxygenases.- 3.7. Concluding remarks.- 3.8. References.- 4. Non-Iron Model Studies on Dioxygenases.- 4.1. Introduction.- 4.2. Cobalt Schiff base complexes as simple dioxygenase models.- 4.3. Co(TPP) catalyzed oxygenation of indoles.- 4.4. Vanadium complexes.- 4.5. Manganese complexes.- 4.6. Copper complexes.- 4.7. Ruthenium, rhodium, iridium complexes.- 4.8. Concluding remarks.- 4.9. References.- 5. Heme Monooxygenases — A Chemical Mechanism for Cyhrome P450 Oxygen Activation —.- 5.1. Introduction.- 5.2. Reaction cycle of cyhrome P450cam.- 5.3. Oxygen bond scission and catalysis.- 5.4. Summary.- 5.5. Acknowledgement.- 5.6. References.- 6. Model Studies on Heme Monooxygenases.- 6.1. Introduction.- 6.2. Successful use of synthetic heme models: Model studies of Fe porphyrin having thiolate ligand.- 6.3. Molecular mechanism of the oxygen activation by P-450.- 6.4. Electrochemical oxidation of iron porphyrin complexes.- 6.5. Mechanistic aspects of compound I formation.- 6.6. O=Mn, O=Cr, and O=Ru porphyrin complexes.- 6.7. Reductive oxygen activation by P-450 models.- 6.8. Catalytic oxidation of organic compoundscatalyzed by iron porphyrins.- 6.9. Catalytic oxidation by manganese porphyrins.- 6.10. Multiplicity of the active species in the catalytic oxidation.- 6.11. Selective oxidations.- 6.12. Metalloporphyrin complexes showing high catalytic efficiency in oxidations.- 6.13. Summary.- 6.14. References.- 7. Nonheme Monooxygenases.- 7.1. Introduction.- 7.2. Nonheme iron monooxygenases.- 7.4. Concluding remarks.- 7.5. References.- 8. Model Studies on Nonheme Monooxygenases — Chemical Models for Nonheme Iron and Copper Monooxygenases —.- 8.1. Introduction.- 8.2. Chemical models for putative reaction intermediates of nonheme iron monooxygenases.- 8.3. Chemical models for copper monooxygenases.- 8.4. References.
From the B&N Reads Blog

Customer Reviews