Open-Channel Flow
In Open-Channel Flow, Second Edition, author M. Hanif Chaudhry draws upon years of practical experience and incorporates numerous examples and real life applications, to provide the reader with: A strong emphasis on the application of efficient solution techniques, computational procedures, and numerical methods suitable for computer analyses; Complete coverage of steady and unsteady flow techniques; A new chapter on sediment transport and updated chapters on uniform flow and two dimensional flow techniques; New and updated problem sets and exercises, a solutions manual for instructors, and a CD-ROM with short computer programs in FORTRAN that include the input data for sample problems and the associated computer output. Open-Channel Flow, Second Edition is written for students in senior-level undergraduate and graduate courses on steady and unsteady open-channel flow and for civil engineers needing up-to-date and relevant information on the latest developments and techniques in the field.
1120851023
Open-Channel Flow
In Open-Channel Flow, Second Edition, author M. Hanif Chaudhry draws upon years of practical experience and incorporates numerous examples and real life applications, to provide the reader with: A strong emphasis on the application of efficient solution techniques, computational procedures, and numerical methods suitable for computer analyses; Complete coverage of steady and unsteady flow techniques; A new chapter on sediment transport and updated chapters on uniform flow and two dimensional flow techniques; New and updated problem sets and exercises, a solutions manual for instructors, and a CD-ROM with short computer programs in FORTRAN that include the input data for sample problems and the associated computer output. Open-Channel Flow, Second Edition is written for students in senior-level undergraduate and graduate courses on steady and unsteady open-channel flow and for civil engineers needing up-to-date and relevant information on the latest developments and techniques in the field.
52.49 In Stock
Open-Channel Flow

Open-Channel Flow

by M. Hanif Chaudhry
Open-Channel Flow

Open-Channel Flow

by M. Hanif Chaudhry

eBook3rd ed. 2022 (3rd ed. 2022)

$52.49  $69.99 Save 25% Current price is $52.49, Original price is $69.99. You Save 25%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

In Open-Channel Flow, Second Edition, author M. Hanif Chaudhry draws upon years of practical experience and incorporates numerous examples and real life applications, to provide the reader with: A strong emphasis on the application of efficient solution techniques, computational procedures, and numerical methods suitable for computer analyses; Complete coverage of steady and unsteady flow techniques; A new chapter on sediment transport and updated chapters on uniform flow and two dimensional flow techniques; New and updated problem sets and exercises, a solutions manual for instructors, and a CD-ROM with short computer programs in FORTRAN that include the input data for sample problems and the associated computer output. Open-Channel Flow, Second Edition is written for students in senior-level undergraduate and graduate courses on steady and unsteady open-channel flow and for civil engineers needing up-to-date and relevant information on the latest developments and techniques in the field.

Product Details

ISBN-13: 9783030964474
Publisher: Springer-Verlag New York, LLC
Publication date: 06/15/2022
Sold by: Barnes & Noble
Format: eBook
File size: 47 MB
Note: This product may take a few minutes to download.

About the Author

M. Hanif Chaudhry, Ph.D., is CEC Distinguished Professor of Civil Engineering and Associate Dean (International Programs) in the  College of Engineering and Computing, University of South Carolina. Dr. Chaudhry received his Ph.D. in Civil Engineering from the University of British Columbia, Vancouver. His area of specialization is water resource engineering with emphasis on the mathematical and physical modeling of steady and unsteady flows in closed conduits and open-channel. He has served as a specialist consultant to national and international organizations and consulting engineering companies in all six continents on large water resource projects and to law firms in litigation cases.  His research interests include both numerical and experimental investigations on fluid transients in pipelines, on flood flows in rivers and channels, on levee breach, and on dam failure. 

Table of Contents


Preface     vii
Basic Concepts     1
Introduction     2
Definitions     2
Classification of Flows     4
Steady and Unsteady Flows     5
Uniform and Nonuniform flows     7
Laminar and Turbulent Flows     7
Subcritical, Supercritical, and Critical Flows     8
Terminology     8
Velocity Distribution     9
Energy Coefficient     11
Momentum Cefficient     13
Example 1-1     15
Pressure Distribution     16
Static Conditions     16
Horizontal, Parallel Flow     16
Parallel Flow in Sloping Channels     17
Curvilinear Flow     18
Reynolds Transport Theorem     20
Computer Program     21
Summary     21
References     26
Conservation Laws     27
Introduction     28
Conservation of Mass     28
Conservation of Momentum     29
Equation of Motion     31
Steady Flow     33
Steady, Uniform Flow     33
Unsteady, Nonuniform Flow     34
SpecificEnergy     34
Application of Momentum and Energy Equations     37
Channel Transition     38
Example 2-1     42
Hydraulic Jump     43
Example 2-2     45
Hydraulic Jump at Sluice Gate Outlet     47
Example 2-3     48
Summary     50
References     54
Critical Flow     55
Introduction     56
Rectangular Channel     56
Specific Energy     56
Unit discharge     58
Specific force     59
Wave Celerity     60
Non-Rectangular Channel     63
Specific Energy     63
Specific Force     64
Application of Critical Flow     65
Constant-width Channel with Bottom Step     66
Horizontal Variable-width Channel     67
Example 3-1     67
Location of Critical Flow     69
Computation of Critical Depth     70
Design curves     70
Trial-and-Error Procedure     71
Numerical Methods     71
Example 3-2     72
Critical Depths in Compound Channels     74
General Remarks      75
Example 3-3     77
Algorithm for Computing the Critical Depths     79
Summary     80
References     84
Uniform Flow     87
Introduction     88
Flow Resistance     88
Flow Resistance Equations     89
Chezy Equation     89
Manning Equation     94
Other Resistance Equations     100
Computation of Normal Depth     102
Example 4-1     104
Equivalent Manning Constant     106
Compound Channel Cross Section     107
Summary     109
References     115
Gradually Varied Flow     119
Introduction     120
Governing Equation     120
Classification of Water-Surface Profiles     122
General Remarks     125
Sketching of Water-Surface Profiles     127
Example 5-1     129
Example 5-2     131
Discharge From a Reservoir     131
Example 5-3     134
Profiles in Compound Channels     136
Example 5-4     137
Example 5-5     140
Summary      144
References     149
Computation of Gradually Varied Flow     151
Introduction     152
General Remarks     152
Direct-Step Method     156
Example 6-1     158
Standard Step Method     160
Example 6-2     164
Integration of Differential Equation     166
Single-step Methods     166
Euler method     168
Improved Euler method     169
Modified Euler Method     170
Fourth-order Runge-Kutta Method     171
Predictor-Corrector Methods     172
Simultaneous Solution Procedure     172
Governing Equations     174
Single and Series Channels     175
Channel Networks     180
Example 6-3     186
Practical Applications     187
Computer Programs     188
Summary     188
References     194
Rapidly Varied Flow     199
Introduction     200
Application of Conservation Laws     201
Channel Transitions     203
General Remarks     203
Subcritical Flow     204
Supercritical Flow      208
Oblique Hydraulic Jump     210
Weirs     212
Sharp-Crested Weirs     212
Broad-Crested Weirs     214
Hydraulic Jump     215
Ratio of Sequent Depths     215
Length of Jump     216
Jump Profile     217
Jump types     217
Energy loss     219
Jump Location     220
Control of Jump     222
Spillways     224
Overflow Spillway     225
Energy Dissipators     228
Stilling Basins     231
Flip Buckets     232
Roller Buckets     234
Summary     237
References     241
Computation of Rapidly Varied Flow     247
Introduction     248
Governing Equations     249
Characteristic directions     251
Coordinate Transformations     252
Computation of Supercritical Flow     254
Finite-difference methods     254
Boundary Conditions     256
Verification     258
Computation of Sub- and Supercritical Flows     261
Numerical Solution      261
Verification     267
Simulation of Hydraulic Jump     270
Governing Equations     271
Numerical Solution     271
Computational Procedure     27
Results     274
Summary     276
References     276
Channel Design     279
Introduction     280
Rigid-Boundary Channels     280
Example 9-1     282
Most Efficient Hydraulic Section     283
Erodible Channels     286
Permissible Velocity Method     286
Example 9-2     288
Tractive Force Method     289
Example 9-3     292
Alluvial Channels     295
Regime Theory     295
Example 9-4     296
Summary     297
References     298
Special Topics     301
Introduction     302
Flow in a Channel Connecting Two Reservoirs     302
Mild bottom slope     302
Steep bottom slope     307
Air Entrainment in High-Velocity Flow     308
Flow Through Culverts     312
Flow Measurement     315
Velocity-area method      316
Slope-area method     316
Flumes     317
Summary     317
References     319
Unsteady Flow     323
Introduction     324
Definitions     324
Occurrence of Unsteady Flow     326
Height and Celerity of a Gravity Wave     326
Continuity equation     327
Momentum equation     328
Example 11-1     330
Summary     331
References     332
Governing Equations for One-Dimensional Flow     333
Introduction     334
St. Venant Equations     334
Continuity Equation     335
Momentum Equation     337
General Remarks     340
Boussinesq Equations     341
Continuity equation     341
Momentum Equation in z-direction     342
Momentum Equation in x-direction     343
Integral Forms     345
Summary     346
References     347
Numerical Methods     349
Introduction     350
Method of characteristics     350
Characteristics     353
Initial and Boundary Conditions     356
Characteristic Grid Method     359
Method of Specified Intervals     361
Other Numerical Methods     362
Summary     363
References     364
Finite-Difference Methods     367
Introduction     368
Terminology     368
Finite-difference approximations     368
Explicit Finite-Difference Schemes     372
Unstable scheme     372
Diffusive scheme     372
MacCormack Scheme     377
Lambda scheme     379
Gabutti Scheme     382
Implicit Finite-Difference Schemes     385
Preissmann Scheme     385
Beam and Warming scheme     388
VasilievVasiliev, O. F. scheme     390
Consistency     390
Stability     392
Example 14-1     396
Summary     397
References     400
Two-Dimensional Flow     407
Introduction     408
Governing Equations     408
Numerical Solution     416
MacCormack Scheme     419
General formulation     420
Boundary conditions      421
Gabutti Scheme     423
General formulation     423
Boundary conditions     425
Artificial Viscosity     426
Beam and Warming Schemes     427
General formulation     427
Factored schemes     430
Implicit split-flux factoring     431
Boundary conditions     433
Finite-Volume Scheme     434
Predictor part     436
Corrector part     436
Applications     437
Partial breach or opening of sluice gates     438
Propagation of a flood wave through channel contraction     440
Comparison with other methods     447
Summary     447
References     448
Sediment Transport     453
Introduction     454
Sediment property     454
Sediment size     455
Size distribution     455
Sand-bed and gravel-bed streams     457
Threshold of sediment motion     458
Critical Shields stress for sediment mixture     460
Condition for significant suspension     460
Shields diagram     461
The Exner equation of bed sediment conservation     463
Exner equation for multiple size fraction     464
Bed-load transport relations     465
Bed load transport relations for poorly sorted sediment     467
Suspended-load transport     468
Entrainment Relations     469
Resistance relations     471
Separation of form drag     472
Summary     474
References     475
Special Topics     479
Introduction     480
Rating Curve     480
Flood Routing     481
Reservoir Routing     482
Channel Routing     484
Kinematic Routing     486
Diffusion Routing     489
Muskingum-Cunge Routing     491
Aggradation and Degradation of Channel Bottom     492
Introduction     492
Governing equations     493
Numerical Scheme     494
Applications     497
Aggradation due to sediment overloading     498
Knickpoint migration     499
References     502
Subject Index     507
Author Index     517
From the B&N Reads Blog

Customer Reviews