Numerical Simulations in the Environmental and Earth Sciences: Proceedings of the Second UNAM-CRAY Supercomputing Conference

Numerical Simulations in the Environmental and Earth Sciences: Proceedings of the Second UNAM-CRAY Supercomputing Conference

Numerical Simulations in the Environmental and Earth Sciences: Proceedings of the Second UNAM-CRAY Supercomputing Conference

Numerical Simulations in the Environmental and Earth Sciences: Proceedings of the Second UNAM-CRAY Supercomputing Conference

Hardcover

$154.00 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Related collections and offers


Overview

Increases in computer power and technology have rapidly advanced the applications of numerical modeling in environmental and earth sciences. The progress of numerical modeling in atmospheric, oceanic, and geophysical sciences was the topic of an international conference held by the National Autonomous University of Mexico. The review articles and research papers in this volume constitute a wide-ranging and up-to-date account of modeling environmental and earth processes through a variety of numerical simulations. Sections are devoted to such topics as General Circulation Models and global change, methods of geophysical data assimilation, and mathematical and computational methods with geophysical applications. This book forms an excellent introduction and overview for graduate students as well as a critical update for researchers.

Product Details

ISBN-13: 9780521580472
Publisher: Cambridge University Press
Publication date: 09/28/1997
Pages: 300
Product dimensions: 7.20(w) x 10.31(h) x 0.79(d)

Table of Contents

Participants; Scientific committee; Organizing committee; Preface; Part I. General Circulation Models and Global Change: 1. A general circulation model of the atmosphere-ocean system; 2. Coupled ocean-atmosphere modeling: computing and scientific aspects; 3. The OCCAM global ocean model; 4. Climatic asymmetries relative to the equator; 5. On the use of a general circulation model to study regional climate; 6. A numerical study of the circulation and sea surface temperature of the Gulf of Mexico; 7. Pacific region CO2 climate change in a global coupled climate model; 8. Prospects and problems in modeling the impacts of climate change in Latin America; 9. PIXSAT, a digital image processing system in a CRAY-UNIX environment; 10. Marine productivity seasonal forecast along the Ecuadorian coastal zone based on physical models of ENSO; 11. Land cover classification by means of satellite imagery and supercomputer resources; Part. II. Dispersion and Mesoscale Modeling: 12. Environmental applications of mesoscale atmospheric models; 13. An integrated air pollution modeling system: application to the Los Angeles Basin; 14. An h-adapting finite element model for atmospheric transport of pollutants; 15. The applicability of a mesoscale model in the Valley of Mexico during extreme air pollution episodes; 16. Mexico city air quality simulations under different fuel consumption scenarios; 17. Numerical modeling of pollutant particle diffusion in the atmospheric boundary layer; 18. Investigating the dispersion inside idealized urban street canyons using a k-epsilon turbulence model; 19. Coupling of an urban dispersion model and an energy-budget model; 20. A mesoscale meteorological model to predict windflow in the Valley of Mexico; 21. Some experiments with a three-dimensional semi-lagrangian and semiimplicit cloud model; 22. Large eddy modeling of stratocumulus clouds; Part III. Geophysical Data Assimilation: 23. Computational aspects of Kalman filtering and smoothing for atmospheric data assimilation; 24. Computational aspects of Goddard's physical-space statistical analysis system (PSAS); 25. A study on the influence of the Pacific and Atlantic SST on the northeast Brazil monthly precipitation using singular value decomposition; 26. Numerically efficient methods applicable to the eigenvalue problems arising in linear stability analysis; 27. Use of canonical correlation analysis to predict the spatial rainfall variability over northeast Brazil; 28. Identification of the ITCZ axis by computational techniques; 29. Variational assimilation of acoustic tomography data and point observations: some comparisons and suggestions to perform error analysis; Part IV. Methods and Applications in Geophysics: 30. Do man-made obstacles produce dynamical p-wave localization in Mexico City earthquakes?; 31. Domain decomposition methods for model parallelization; 32. Parallelization using th-collocation; 32. A method for simultaneous estimation of multiphase relative permeability and capillary pressure functions.
From the B&N Reads Blog

Customer Reviews