Nonlocal Euler-Bernoulli Beam Theories: A Comparative Study
This book presents a comparative study on the static responses of the Euler-Bernoulli beam governed by nonlocal theories, including the Eringen’s stress-gradient beam theory, the Mindlin’s strain-gradient beam theory, the higher-order beam theory and the peridynamic beam theory. Benchmark examples are solved analytically and numerically using these nonlocal beam equations, including the simply-supported beam, the clamped-clamped beam and the cantilever beam. Results show that beam deformations governed by different nonlocal theories at different boundary conditions show complex behaviors. Specifically, the Eringen’s stress-gradient beam equation and the peridynamic beam equation yield a much softer beam deformation for simply-supported beam and clamped-clamped beam, while the beam governed by the Mindlin’s strain-gradient beam equation is much stiffer. The cantilever beam exhibits a completely different behavior. The higher-order beam equation can be stiffer or softer depending on thevalues of the two nonlocal parameters. Moreover, the deformation fluctuation of the truncated order peridynamic beam equation is observed and explained from the singularity aspect of the solution expression. This research casts light on the fundamental explanation of nonlocal beam theories in nano-electromechanical systems.
"1138646833"
Nonlocal Euler-Bernoulli Beam Theories: A Comparative Study
This book presents a comparative study on the static responses of the Euler-Bernoulli beam governed by nonlocal theories, including the Eringen’s stress-gradient beam theory, the Mindlin’s strain-gradient beam theory, the higher-order beam theory and the peridynamic beam theory. Benchmark examples are solved analytically and numerically using these nonlocal beam equations, including the simply-supported beam, the clamped-clamped beam and the cantilever beam. Results show that beam deformations governed by different nonlocal theories at different boundary conditions show complex behaviors. Specifically, the Eringen’s stress-gradient beam equation and the peridynamic beam equation yield a much softer beam deformation for simply-supported beam and clamped-clamped beam, while the beam governed by the Mindlin’s strain-gradient beam equation is much stiffer. The cantilever beam exhibits a completely different behavior. The higher-order beam equation can be stiffer or softer depending on thevalues of the two nonlocal parameters. Moreover, the deformation fluctuation of the truncated order peridynamic beam equation is observed and explained from the singularity aspect of the solution expression. This research casts light on the fundamental explanation of nonlocal beam theories in nano-electromechanical systems.
54.99 In Stock
Nonlocal Euler-Bernoulli Beam Theories: A Comparative Study

Nonlocal Euler-Bernoulli Beam Theories: A Comparative Study

by Jingkai Chen
Nonlocal Euler-Bernoulli Beam Theories: A Comparative Study

Nonlocal Euler-Bernoulli Beam Theories: A Comparative Study

by Jingkai Chen

Paperback(1st ed. 2021)

$54.99 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Related collections and offers


Overview

This book presents a comparative study on the static responses of the Euler-Bernoulli beam governed by nonlocal theories, including the Eringen’s stress-gradient beam theory, the Mindlin’s strain-gradient beam theory, the higher-order beam theory and the peridynamic beam theory. Benchmark examples are solved analytically and numerically using these nonlocal beam equations, including the simply-supported beam, the clamped-clamped beam and the cantilever beam. Results show that beam deformations governed by different nonlocal theories at different boundary conditions show complex behaviors. Specifically, the Eringen’s stress-gradient beam equation and the peridynamic beam equation yield a much softer beam deformation for simply-supported beam and clamped-clamped beam, while the beam governed by the Mindlin’s strain-gradient beam equation is much stiffer. The cantilever beam exhibits a completely different behavior. The higher-order beam equation can be stiffer or softer depending on thevalues of the two nonlocal parameters. Moreover, the deformation fluctuation of the truncated order peridynamic beam equation is observed and explained from the singularity aspect of the solution expression. This research casts light on the fundamental explanation of nonlocal beam theories in nano-electromechanical systems.

Product Details

ISBN-13: 9783030697877
Publisher: Springer International Publishing
Publication date: 02/28/2021
Series: SpringerBriefs in Applied Sciences and Technology
Edition description: 1st ed. 2021
Pages: 59
Product dimensions: 6.10(w) x 9.25(h) x (d)

About the Author

Dr. Jingkai Chen is currently the instructor (tenure track) at China University of Petroleum (East China). He got his Ph.D degree from Rice University supervised by Prof. Pol D. Spanos. His research interests are drilling engineering, shastic mechanics and peridynamics.

Table of Contents

Introduction.- Eringen’s nonlocal beam theories.- Peridynamic beam theory.- Analytical solution to benchmark examples.- Numerical solution to integral-form peridynamic beam equation.- Conclusion.
From the B&N Reads Blog

Customer Reviews