Noncontact Atomic Force Microscopy

Noncontact Atomic Force Microscopy

Noncontact Atomic Force Microscopy

Noncontact Atomic Force Microscopy

Paperback(Softcover reprint of the original 1st ed. 2002)

$219.99 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Related collections and offers


Overview

Since 1995, the noncontact atomic force microscope (NC-AFM) has achieved remarkable progress. Based on nanomechanical methods, the NC-AFM detects the weak attractive force between the tip of a cantilever and a sample surface. This method has the following characteristics: it has true atomic resolution; it can measure atomic force interactions, i.e. it can be used in so-called atomic force spectroscopy (AFS); it can also be used to study insulators; and it can measure mechanical responses such as elastic deformation. This is the first book that deals with all of the emerging NC-AFM issues.

Product Details

ISBN-13: 9783642627729
Publisher: Springer Berlin Heidelberg
Publication date: 10/23/2012
Series: NanoScience and Technology
Edition description: Softcover reprint of the original 1st ed. 2002
Pages: 440
Product dimensions: 6.10(w) x 9.25(h) x 0.04(d)

Table of Contents

Introduction.- Principles of NC-AFM.- Semiconductor Surfaces.- Bias Dependence of NC-AFM Images and Tunneling Current Variations on Semiconductors.- Alkali Halides.- Atomic Resolution Imaging on Fluorides.- Atomically Resolved Imaging of a NiO(001) Surface.- Atomic Structure, Order and Disorder of High-Temperature Reconstructed alpha-Al2O3(0001).- NC-AFM Imaging of Surface Reconstructions and Metal Growth on Oxides.- Atoms and Molecules on TiO2(110) and CeO2(111) Surfaces-. NC-AFM Imaging of Adsorbed Molecules.- Organic Molecular Films.- Single-Molecule Analysis.- Low-Temperature Measurements: Principles, Instrumentation, and Application.- Theory of NC-AFM.- Chemical Interaction in NC-AFM on Semiconductor Surfaces.- Contrast Mechanisms on Insulating Surfaces.- Analysis of Microscopy and Spectroscopy Experiments.- Theory of Energy Dissipation into Surface Vibrations.- Measurement of Dissipation Induced by Tip-Sample Interactions.
From the B&N Reads Blog

Customer Reviews