Nitrogen Removal Characteristics of Aerobic Denitrifying Bacteria and Their Applications in Nitrogen Oxides Emission Mitigation

Nitrogen Removal Characteristics of Aerobic Denitrifying Bacteria and Their Applications in Nitrogen Oxides Emission Mitigation

by Maosheng Zheng
ISBN-10:
981132431X
ISBN-13:
9789811324314
Pub. Date:
11/03/2018
Publisher:
Springer Nature Singapore
ISBN-10:
981132431X
ISBN-13:
9789811324314
Pub. Date:
11/03/2018
Publisher:
Springer Nature Singapore
Nitrogen Removal Characteristics of Aerobic Denitrifying Bacteria and Their Applications in Nitrogen Oxides Emission Mitigation

Nitrogen Removal Characteristics of Aerobic Denitrifying Bacteria and Their Applications in Nitrogen Oxides Emission Mitigation

by Maosheng Zheng
$109.99
Current price is , Original price is $109.99. You
$109.99 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Overview

This book systematically investigates the nitrogen removal characteristics of two screened aerobic denitrifying bacteria and their applications in nitrogen oxides emissions reduction. It reveals that Pseudomonas stutzeri PCN-1 possesses excellent capacity for aerobic nitrogen removal, regardless of whether nitrate, nitrite or N2O were taken as denitrification substrates. It also demonstrates that the rapid N2O reduction is due to the coordinate expression of denitrification genes. Further, the book discusses the bioaugmentation experiments conducted in denitrifying SBR and a pilot-scale Carrousel oxidation ditch, which confirmed that the strain could significantly enhance denitrification performance, reduce N2O emission and improve system stability. The second strain, P.aeruginosa PCN-2 accumulated negligible NO during aerobic nitrate and nitrite removal and efficiently removed NO from flue gas. This study is of great significance for potentialapplications of aerobic denitrification in mitigating nitrogen oxides emissions from biological nitrogen removal systems.


Product Details

ISBN-13: 9789811324314
Publisher: Springer Nature Singapore
Publication date: 11/03/2018
Series: Springer Theses
Edition description: 1st ed. 2019
Pages: 130
Product dimensions: 6.10(w) x 9.25(h) x (d)

About the Author

Research Area: Biological nitrogen removal technologies; Environmental microbiology.
Honors: Beijing Outstanding Graduate (2015); Peking University Outstanding Graduate (2015); Peking University Excellent Doctoral Dissertation (2015); Peking University Academic Innovation Award (2015); Peking University Professional Scholarship (2015); Institute of Environmental Engineering Academic Paper Award (2015); Gold Medal in 41th Geneva International Exhibition of Inventions (2013).

Publications:
(1) Zheng M., He D., Ma T., et al., 2014. Reducing NO and N2O emission during aerobic denitrification by newly isolated Pseudomonas stutzeri PCN-1. Bioresource Technology 162, 80-88.
(2) Zheng M., Tian Y., Liu T., et al., 2015. Minimization of nitrous oxide emission in a pilot-scale oxidation ditch: generation, spatial variation and microbial interpretation. Bioresource Technology 179, 510-517.
(3) Zheng M.S., Ma L.K., Li T.H., et al., 2015. Rapid Assessment Method for Eco-water Deficit in Catchments. Journal of Environmental Informatics. (In Press)
(4) Zheng M., Li C., Liu S., et al., 2016. Potential application of aerobic denitrifying bacterium Pseudomonas aeruginosa PCN-2 in nitrogen oxides (NOx) removal from flue gas. Journal of Hazardous Materials. (Under Review)
(5) Zhu S.1, Zheng M.1, Li C., et a., 2015. Special role of corn flour as an ideal carbon source for aerobic denitrification with minimized nitrous oxide emission. Bioresource Technology 186, 44-51.
(6) He D., Zheng M., Ma T., et al., 2015. Interaction of aerobic Cr (VI) reduction and denitrification by strain Pseudomonas aeruginosa PCN-2. Bioresource Technology 185, 346-352.
(7) He D., Zheng M., Ma T., et al., 2015. Nitrite interference and elimination in diphenylcarbazide (DPCI) spectrophotometric determination of hexavalentchromium. Water Science and Technology 203, 223-229.
(8) Liu T., Liu S. Zheng M., et al., 2016. Performance assessment of full-Scale wastewater treatment plants based on seasonal variability of microbial communities via high-throughput sequencing. Plos One 11, e0152998.

Table of Contents

Introduction.- Screening and identification of two efficient aerobic denitrifying bacterial strains.- Nitrogen removal characteristics and mechanism research of Pseudomonas stutzeri PCN-1.- Application of Pseudomonas stutzeri PCN-1 in nitrogen oxides emission mitigation.- Nitrogen removal characteristics and application of Pseudomonas aeruginosa PCN-2.- Conclusion and prospects.
From the B&N Reads Blog

Customer Reviews