Mind over Magma: The Story of Igneous Petrology

Mind over Magma: The Story of Igneous Petrology

by Davis A. Young
Mind over Magma: The Story of Igneous Petrology

Mind over Magma: The Story of Igneous Petrology

by Davis A. Young

eBook

$105.99  $141.00 Save 25% Current price is $105.99, Original price is $141. You Save 25%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Mind over Magma chronicles the scientific effort to unravel the mysteries of rocks that solidified on or beneath Earth's surface from the intensely hot, molten material called magma. The first-ever comprehensive history of the study of such igneous rocks, it traces the development of igneous petrology from ancient descriptions of volcanic eruptions to recent work incorporating insights from physical chemistry, isotope studies, and fluid dynamics.


Intellectual developments in the field--from the application of scientific methods to the study of rocks to the discovery of critical data and the development of the field's major theories--are considered within their broader geographical, social, and technological contexts. Mind over Magma examines the spread of igneous petrology from western Europe to North America, South Africa, Japan, Australia, and much of the rest of the world. It considers the professionalization and Anglicization of the field, detailing changes in publication outlets, the role of women, and the influence of government funding. The book also highlights the significant role that technological developments--including the polarizing microscope, high-temperature quenching furnaces, and instrumental analysis--have played in the discovery of new data and development of revolutionary insights into the nature of igneous rocks.


Both an engagingly told story and a major reference, Mind over Magma is the only available history of this important field. As such, it will be appreciated by petrologists, geochemists, and other geologists as well as by those interested in the history of science.


Product Details

ISBN-13: 9780691187723
Publisher: Princeton University Press
Publication date: 06/05/2018
Sold by: Barnes & Noble
Format: eBook
Pages: 712
File size: 90 MB
Note: This product may take a few minutes to download.

About the Author

Davis A. Young is Professor of Geology at Calvin College and the author of several books, including N. L. Bowen and Crystallization-Differentiation: The Evolution of a Theory.

Read an Excerpt

Mind over Magma

The Story of Igneous Petrology

Chapter One

BREATH-PIPES AND IGNIVOMOUS MOUNTAINS

Early Concepts of Volcanism

The science of igneous petrology requires three things: igneous rocks, human beings, and an appropriate methodology for the acquisition of knowledge and understanding about the igneous rocks. Magmatic activity and igneous rocks have characterized the crust throughout the 4.5 billion years of Earth history. Despite the existence of a planet that throbs with volcanic activity and that is decorated with innumerable masses of granite and gabbro, rhyolite and basalt, anorthosite and carbonatite, a science of igneous petrology cannot exist in the absence of humans. Anatomically modern humans probably appeared on Earth more than 100,000 years ago. Some of them observed volcanic eruptions, and many of them used igneous rocks such as obsidian. That was certainly the case a few millennia ago when civilizations sprang up in the ancient Near East. Yet the science of igneous petrology finally emerged only when people began to devise systematic ways of observing and thinking about igneous rocks. This book tells the story of how the science that we now call igneous petrology came into being and how it subsequently evolved.

VOLCANOES IN THE WORLD OF THEANCIENTS

Human beings have long been curious about the behavior and significance of volcanoes, the great "fire-breathing" mountains that instill both terror and awe when they violently spew noxious fumes and flaming rocks. Because some early civilizations were located in regions of vigorous tectonic activity, our distant predecessors had ample opportunity to observe and reflect on volcanic phenomena. Although the ancient peoples dwelling on the vast alluvial plains of the Nile, Tigris, Euphrates, and Indus Rivers had little acquaintance with volcanoes, the citizens of classical Greece and Rome as well as the inhabitants of ancient Israel, living near junctions of tectonic plates, were certainly familiar with volcanism. The interpretations of volcanic phenomena entertained by these civilizations were variously mythological, theological, or naively scientific.

The Old Testament contains a sufficient number of references to "burning sulfur" or "brimstone" (Genesis 19:24; Deuteronomy 29:23; Job 18:15; Psalms 11:6; Isaiah 30:33, 34:9; and Ezekiel 38:22) and to "smoking mountains" (Exodus 19:18, 20:18; Psalms 104:32, 144:5) to suggest that the ancient Israelites were acquainted with volcanic phenomena. Israel's interest in the phenomena of nature, however, was largely theological. The Old Testament writers did not indulge in scientific theorizing about volcanoes, and no other ancient literature indicates the extent to which Hebrew scholars may have speculated about such matters. The book of Genesis envisioned the destruction of the ancient cities of Sodom and Gomorrah by fire and burning sulfur as an event of divine retribution for their unparalleled wickedness. Although the description in the book of Exodus of the giving of the ten commandments at Mount Sinai by Yahweh suggests the possibility of accompanying volcanic activity, the writer of Exodus regarded Yahweh as the one who caused the mountains to smoke and the earth to tremble. Neither Genesis nor Exodus inquired into the nature of smoking mountains or the eruption of burning sulfur in terms of mechanistic explanations or natural causes. More recently, Neev and Emery (1995) suggested that Sodom and Gomorrah were destroyed by an earthquake and that the flaming materials might have been ignited hydrocarbons that had been released from reservoirs by the seismic activity.

In contrast to the monotheistic Hebrews, both the classical Greek and Roman civilizations were steeped in pagan polytheism and its attendant mythology. Volcanic phenomena were, therefore, commonly interpreted in mythological terms. For example, the Roman writer, Publius Vergilius Maro, better known as Virgil (70-19 B.C.), penned a graphic description of the eruption of Mount Etna, the great volcano of Sicily, in his epic Aeneid. Although describing terrifying crashes, black clouds smoking with pitch-black eddies, glowing ashes, balls of flame licking the stars, and the violent vomiting of molten rock boiling up from the lowest depths, Virgil (Fairclough, 1994) linked these occurrences to the story about the giant Enceladus (Typhon to the Greeks) being scathed by a thunderbolt of Jupiter and weighed down by the mass of Mount Etna. Every time that the giant shifted from one side to the other, Virgil said, the region moaned, trembled, and veiled the sky in smoke. Virgil also located the entrance to the underworld in the vicinity of Lago Averno (Lake Avernus) in the volcanic terrain known as Campi Phlegraei (the Phlegraean Fields) west of Naples, Italy. The lake occupies a volcanic crater.

The Greeks designated Hephaestus, and later Roman myths designated Vulcan, as the god of fire. Roman poets linked Vulcan's workshop with active volcanoes, allegedly the chimneys of Vulcan's forge. The island of Vulcano, one of the Lipari Islands north of Sicily, received its name because it was considered to be the location of Vulcan's forge. From the Roman god Vulcan and the island Vulcano the name of "volcano" has since been applied to smoking, cinder-erupting, lava-emitting mountains around the world.

Mythological conceptions of volcanoes were not confined to the classical civilizations. More recent volcano myths existed in Tonga, Samoa, Indonesia, Iceland, and among the Aztecs of Mexico. Myths about volcanoes persist in Japan and Hawaii. Many native Hawaiians still envision eruptions of Kilauea as expressions of the wrath of the goddess Pele, who is said to reside in the caldera of Kilauea. They believe that Pele is able to make islands and mountains, melt rocks, and destroy forests.

Despite the mythological overtones in much classical writing about the natural world, some authors did provide explanations for natural phenomena, including volcanoes, in terms of natural, material causes. Several Greek writers made important observations about geological phenomena such as erosion, sedimentation, fossilization, the interchange of land and sea, and earthquakes (Desmond, 1975). In addition, many of the Greek and Roman references to Mount Vesuvius and the Phlegraean Fields in Italy, Mount Etna in Sicily, the Lipari Islands, and Santorini near Crete contain descriptions of landforms and eruptions. In some cases, the writers attempted to explain volcanic behavior in terms of physical causes.

Prior to the eruption of Mount Vesuvius in A.D. 79, Mount Etna, known for its frequent emissions, drew the widest attention. The philosopher Empedocles of Agrigentum (492-432 B.C.) presumably died by falling into the crater of Mount Etna. Diodorus of Sicily (1st century B.C.) referred to fiery eruptions from Mount Etna that laid waste to regions along the sea (Oldfather, 1933). He wrote that such great torrents of lava were poured forth from Mount Etna that the people known as the Sicani had to move to the western part of Sicily. The geographer Strabo (63 B.C.-A.D. 21) discussed volcanoes in considerable detail. In his Geography, he noted that an earlier writer, Poseidonius, had commented that the fields of the Catanaeans were covered to great depth by volcanic ash during eruptions of Mount Etna. Strabo observed that volcanic ash ultimately proved to be beneficial because it rendered the land so fertile (Jones, 1931). When lava solidified, he found that the surface became stony to such a depth that quarrying was necessary to uncover the original land surface. He reported that the melted liquid that pours over the rim of Mount Etna's craters is a "black mud" that flows down the mountain and solidifies to millstone. Strabo provided an extensive description of Mount Etna, which evidently supported a significant summit-climbing trade. He observed that the top of the mountain experienced many changes. The fire concentrated first in one crater, then in another. The mountain sent forth lava on one occasion, flames and fiery smoke on another, and red-hot masses on still another. Strabo conjectured that Sicily was not a piece of land that had broken away from Italy but a landmass that might have been elevated out of the sea because of the volcanic eruptions of Mount Etna. He proposed a similar origin for the Lipari Islands and described other instances of land emerging from the sea by volcanic action.

Many references to Mount Vesuvius and the nearby Phlegraean Fields appear in classical literature written prior to the cataclysm of A.D. 79. Diodorus of Sicily referred to the arrival of Hercules at the Phlegraean plain, so named from the mountain that in old times had erupted in a huge fire as Mount Etna did in Sicily (Oldfather, 1933). Diodorus noted that the mountain was called Vesuvius in his day and that it showed many signs of the fire that raged in ancient times. The Roman architect Vitruvius (d. 25 B.C.) described volcanic products in the vicinity of Mount Vesuvius such as pozzolana and pumice. Vitruvius noted that "in ancient times the tides of heat, swelling and overflow-ing from under Mount Vesuvius, vomited forth fire from the mountain upon the neighbouring country" (Morgan, 1960, p. 47). As a result, he surmised that "sponge-stone" (Pompeian pumice) had been formed by burning of some other kind of rock. Strabo wrote that the summit of Mount Vesuvius was mostly flat and unfruitful, appeared ash-colored, and had pore-like cavities in soot-colored masses of rock that looked as though they had been eaten out by fire (Jones, 1931). He inferred that the district had once been on fire and that the fire was quenched after the fuel gave out.

Understandably, the cataclysmic eruption of Mount Vesuvius that buried the cities of Pompeii and Herculaneum in A.D. 79 attracted considerable attention. The eruption was described in graphic and dramatic detail by Gaius Plin-ius Caecilius Secundus, better known as Pliny the Younger (A.D. 61-114), who was only seventeen years old at the time. In a letter to Cornelius Tacitus, Pliny wrote about the death of his uncle, Gaius Plinius Secundus (Pliny the Elder) (A.D. 23-79), the author of the monumental Natural History. The younger Pliny wrote prophetically that his uncle died in a catastrophe that was so spectacular that his name would likely live forever (Radice, 1969). He reported that his uncle, the commander of the fleet at Misenum, ordered his ships across the Bay of Naples for a closer look at the developing eruption. Eventually, according to the nephew, the flames and smell of sulfur became so strong that most people took flight and roused Pliny the Elder to stand up. As he was leaning on two slaves, his nephew wrote, he suddenly collapsed, most likely because the dense fumes had choked his breathing. When daylight had returned two days later, the body of Pliny the Elder was found intact, uninjured, fully clothed, and looking asleep rather than dead. In a later letter to Tacitus, Pliny the Younger told of his own escape from the dense black cloud of falling ash. When the darkness finally dispersed, he wrote, the sun was shining much as it does during an eclipse. Pliny admitted to being terrified to see that everything had been buried deep in ashes like snowdrifts. Sigurdsson (1999) has written a detailed account of the famous eruption.

A remarkable aspect of Greco-Roman writing about volcanoes is that at least three rudimentary theories of volcanism were proposed: the exhalation theory originated by Aristotle, the fuel theory of Strabo, Vitruvius, and Seneca, and the organismal-breathing theory of Ovid. The most elaborate of these theories, expounded in Meteorologica, was developed by Aristotle (B.C. 384-322) in the context of his general theory of exhalations. He interpreted volcanic eruptions as the end result of the movements of subterranean exhalations (winds) that gave rise to earthquakes. Aristotle cited an eruption in the Lipari Islands as an example. He said that the wind that caused earthquakes on the islands broke out like a hurricane. The earth swelled and rose into a lump with a noise. The swelling finally exploded so that a large amount of wind, cinders, and ash broke forth, smothering the city of Lipara and extending as far as Italy. In this case, Aristotle said, the breaking up of the air into tiny particles caused them to catch fire within the earth (Lee, 1952). T. Lucretius Caro (Lucretius) (c. 99-c. 55 B.C.), a Roman poet, adopted an essentially Aristotelian explanation in his account of the nature of volcanoes in De Rerum Natura. Mount Etna, Lucretius suggested, is hollow underneath, and all its caves are filled with wind (Bailey, 1947). When agitated, the wind becomes hot, eventually heating all the rocks and earth that it touches. In time, the agitated wind heats the rocks so much that they emit swift flames. The wind, Lucretius wrote, drives itself through the mountain's jaws carrying heat, scattering ash and smoke with thick murky darkness, and hurling heavy rocks.

Strabo, too, linked volcanic flames with winds. He claimed that the flames at Mount Etna and on the volcanic island of Thermessa (Hiera) were stimulated along with winds. When the winds died away, so, too, did the flames. Strabo, however, also maintained that volcanic eruptions feed on some kind of fuel. He referred to the exhaustion of fuel at Mount Vesuvius and suggested that volcanic fires might be kindled by fuel just as the wind is fueled by evaporation from the sea. Vitruvius was much more explicit about this alternative view. In discussing "pozzolana" he noted that the soil in the vicinity of Mount Vesuvius is hot and full of hot springs. Such a condition would not exist, he claimed, "unless the mountains had beneath them huge fires of burning sulphur or alum or asphalt" (Morgan, 1960, p. 47). Aristotle's exhalation explanation was combined with the fuel theory of Vitruvius by Lucius Annaeus Seneca (c. 2 B.C.-A.D. 65). Seneca suggested in Naturales Quaestiones that when subterranean winds rush through underground cavities containing sulfur and other combustible materials, these flammable substances are ignited by friction (Cor-coran, 1971).

A third view was suggested by Publius Ovidius Naso (Ovid) (43 B.C.-A.D. 17), the Roman author of the epic poem Metamorphoses. Suggesting that Earth is a great organism, he likened volcanic eruptions to the breathing of an animal. Ovid, however, combined the organic theory with Aristotle's exhalation theory and Vitruvius' fuel theory: He asserted that if the earth is like a living animal with many breathing-holes that can exhale flames, then it can close up those holes and open new ones when it shakes itself. Moreover, the friction of pent-up winds in caverns driving against the rocks could cause fire. After the winds had spent their force, however, the caverns would cool and the flames would be extinguished. Ovid also said that pitchy substances and yellow sulfur might serve as sustenance for the fires, and when these nourishing substances were exhausted then the fires would die out (Miller, 1977). Sigurdsson (1999) has discussed classical Greek and Roman ideas about volcanoes more thoroughly.

VOLCANISM IN THE MIDDLE AGES

The writers of ancient Greece and Rome provided descriptions of volcanoes and volcanic eruptions, suggested several causes for volcanic activity, and referred to emission products such as lava (ruax), scoria, pozzolana, and ash. In the early centuries of the Christian era, conditions that fostered scholarly thought began to deteriorate. Economic decline and political turmoil plagued the Roman Empire until it fell to barbarian invaders. Contact between the Latin West and Greek East diminished. The early Christian movement, typically popular among the poorer classes and faced with much persecution, had no time for leisurely reflection about the natural world. As Christianity continued to spread, however, it became the dominant cultural force in the western world. While Christianity encouraged literacy and education, particularly through the monastic movement, theological questions absorbed most of the intellectual energy of scholars. Moreover, the church was ambivalent about the knowledge acquired by the pagan Greeks. As historian of science David Lind-berg (1992, p. 151) observed in his discussion of the development of science from classical times to the Middle Ages, if the ancient church is compared to the National Science Foundation, it will "prove to have failed abysmally as a supporter of science and natural philosophy." He pointed out, however, that in relation to its contemporaries, "the church was one of the major patrons-perhaps the major patron-of scientific learning." Although scientific thought in general and thought about volcanoes in particular stagnated during the first several centuries of the Christian era, some medieval Christian scholars retained an interest in geological matters. These individuals speculated about fossils and the effects of the biblical flood and compiled encyclopedic lists of stony objects (Adams, 1938). So far as we know, however, medieval Christian writers said little that was new about volcanoes, although Albertus Magnus (c. 1200-1280) attempted an experiment to determine whether volcanic action resulted from subterranean steam pressure (Koch, 1966).

(Continues...)



Excerpted from Mind over Magma by Davis A. Young Copyright © 2003 by Princeton University Press . Excerpted by permission.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

What People are Saying About This

From the Publisher

"This is a scholarly, exhaustive, deep, refreshing, thought-provoking, and humbling history of our science by a skilled practitioner and fluent writer. I never expected to see such a thing, nor to enjoy it so much."—S. A. Morse, Department of Geosciences, University of Massachusetts

"This book fulfills the lack of a modern analysis of the history of igneous petrology and will be a significant contribution. The author is a well-known igneous petrologist who appreciates the extent to which many geological questions are still awaiting definitive answers."—Hatten S. Yoder, Jr., Geophysical Laboratory, Carnegie Institution of Washington

Morse

This is a scholarly, exhaustive, deep, refreshing, thought-provoking, and humbling history of our science by a skilled practitioner and fluent writer. I never expected to see such a thing, nor to enjoy it so much.
S. A. Morse, Department of Geosciences, University of Massachusetts

Yoder

This book fulfills the lack of a modern analysis of the history of igneous petrology and will be a significant contribution. The author is a well-known igneous petrologist who appreciates the extent to which many geological questions are still awaiting definitive answers.
Hatten S. Yoder, Jr., Geophysical Laboratory, Carnegie Institution of Washington

Recipe

"This is a scholarly, exhaustive, deep, refreshing, thought-provoking, and humbling history of our science by a skilled practitioner and fluent writer. I never expected to see such a thing, nor to enjoy it so much."—S. A. Morse, Department of Geosciences, University of Massachusetts

"This book fulfills the lack of a modern analysis of the history of igneous petrology and will be a significant contribution. The author is a well-known igneous petrologist who appreciates the extent to which many geological questions are still awaiting definitive answers."—Hatten S. Yoder, Jr., Geophysical Laboratory, Carnegie Institution of Washington

From the B&N Reads Blog

Customer Reviews