Microtechnology for Cell Manipulation and Sorting
This book delves into the recent developments in the microscale and microfluidic technologies that allow manipulation at the single and cell aggregate level. Expert authors review the dominant mechanisms that manipulate and sort biological structures, making this a state-of-the-art overview of conventional cell sorting techniques, the principles of microfluidics, and of microfluidic devices. All chapters highlight the benefits and drawbacks of each technique they discuss, which include magnetic, electrical, optical, acoustic, gravity/sedimentation, inertial, deformability, and aqueous two-phase systems as the dominant mechanisms utilized by microfluidic devices to handle biological samples. Each chapter explains the physics of the mechanism at work, and reviews common geometries and devices to help readers decide the type of style of device required for various applications. This book is appropriate for graduate-level biomedical engineering and analytical chemistry students, as well as engineers and scientists working in the biotechnology industry.
1124123963
Microtechnology for Cell Manipulation and Sorting
This book delves into the recent developments in the microscale and microfluidic technologies that allow manipulation at the single and cell aggregate level. Expert authors review the dominant mechanisms that manipulate and sort biological structures, making this a state-of-the-art overview of conventional cell sorting techniques, the principles of microfluidics, and of microfluidic devices. All chapters highlight the benefits and drawbacks of each technique they discuss, which include magnetic, electrical, optical, acoustic, gravity/sedimentation, inertial, deformability, and aqueous two-phase systems as the dominant mechanisms utilized by microfluidic devices to handle biological samples. Each chapter explains the physics of the mechanism at work, and reviews common geometries and devices to help readers decide the type of style of device required for various applications. This book is appropriate for graduate-level biomedical engineering and analytical chemistry students, as well as engineers and scientists working in the biotechnology industry.
111.99 In Stock
Microtechnology for Cell Manipulation and Sorting

Microtechnology for Cell Manipulation and Sorting

Microtechnology for Cell Manipulation and Sorting

Microtechnology for Cell Manipulation and Sorting

eBook1st ed. 2017 (1st ed. 2017)

$111.99  $149.00 Save 25% Current price is $111.99, Original price is $149. You Save 25%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

This book delves into the recent developments in the microscale and microfluidic technologies that allow manipulation at the single and cell aggregate level. Expert authors review the dominant mechanisms that manipulate and sort biological structures, making this a state-of-the-art overview of conventional cell sorting techniques, the principles of microfluidics, and of microfluidic devices. All chapters highlight the benefits and drawbacks of each technique they discuss, which include magnetic, electrical, optical, acoustic, gravity/sedimentation, inertial, deformability, and aqueous two-phase systems as the dominant mechanisms utilized by microfluidic devices to handle biological samples. Each chapter explains the physics of the mechanism at work, and reviews common geometries and devices to help readers decide the type of style of device required for various applications. This book is appropriate for graduate-level biomedical engineering and analytical chemistry students, as well as engineers and scientists working in the biotechnology industry.

Product Details

ISBN-13: 9783319441399
Publisher: Springer-Verlag New York, LLC
Publication date: 10/05/2016
Series: Microsystems and Nanosystems
Sold by: Barnes & Noble
Format: eBook
Pages: 281
File size: 7 MB

About the Author

Wonhee Lee, PhD, is Assistant Professor in the Graduate School of Nanoscience and Technology at KAIST, a public research university located in South Korea. Wonhee’s research focuses on the development and application of microfluidic cell calorimeters for cell biology, and on microfluidic inertial self-assembly.

Peter Tseng, PhD, is currently a postdoc at the University of California, Los Angeles. He has a PhD in biomedical engineering, and his research focuses on cell manipulation, magnets, and MEMS.

Dino Di Carlo, PhD, is an Associate Professor in the department of Bioengineering and Biomedical Engineering interdepartmental graduate program at the University of California, Los Angeles. Among other honors he was awarded the National Science Foundation (NSF) Faculty Early Career Development award and the U.S. Office of Naval Research (ONR) Young Investigator Award in 2012, the Packard Fellowship for Science and Engineering and Defense Advanced Research Projects Agency (DARPA) Young Faculty Award in 2011, and received the National Institutes of Health (NIH) Director’s New Innovator Award and Coulter Translational Research Award in 2010.

Table of Contents

Microfluidic Cell Sorting and Separation Technology.- Magnetic Cell Manipulation and Sorting.- Electrical Manipulation and Sorting.- Optical Manipulation of Cells.- Acoustic Cell Manipulation.- Gravity-Driven Fluid Pumping and Cell Manipulation.- Inertial Microfluidic Cell Separation.- Microfluidic Technologies for Deformability Based Cell Sorting.- Microfluidic Aqueous Two-Phase Systems.
From the B&N Reads Blog

Customer Reviews