Mark begins by discussing machine learning and what it can do; introducing key mathematical and computational topics in an approachable manner; and walking you through the first steps in building, training, and evaluating learning systems. Step by step, you’ll fill out the components of a practical learning system, broaden your toolbox, and explore some of the field’s most sophisticated and exciting techniques. Whether you’re a student, analyst, scientist, or hobbyist, this guide’s insights will be applicable to every learning system you ever build or use.
- Understand machine learning algorithms, models, and core machine learning concepts
- Classify examples with classifiers, and quantify examples with regressors
- Realistically assess performance of machine learning systems
- Use feature engineering to smooth rough data into useful forms
- Chain multiple components into one system and tune its performance
- Apply machine learning techniques to images and text
- Connect the core concepts to neural networks and graphical models
- Leverage the Python scikit-learn library and other powerful tools
The full text downloaded to your computer
With eBooks you can:
- search for key concepts, words and phrases
- make highlights and notes as you study
- share your notes with friends
eBooks are downloaded to your computer and accessible either offline through the Bookshelf (available as a free download), available online and also via the iPad and Android apps.
Upon purchase, you will receive via email the code and instructions on how to access this product.
Time limit
The eBooks products do not have an expiry date. You will continue to access your digital ebook products whilst you have your Bookshelf installed.
Mark begins by discussing machine learning and what it can do; introducing key mathematical and computational topics in an approachable manner; and walking you through the first steps in building, training, and evaluating learning systems. Step by step, you’ll fill out the components of a practical learning system, broaden your toolbox, and explore some of the field’s most sophisticated and exciting techniques. Whether you’re a student, analyst, scientist, or hobbyist, this guide’s insights will be applicable to every learning system you ever build or use.
- Understand machine learning algorithms, models, and core machine learning concepts
- Classify examples with classifiers, and quantify examples with regressors
- Realistically assess performance of machine learning systems
- Use feature engineering to smooth rough data into useful forms
- Chain multiple components into one system and tune its performance
- Apply machine learning techniques to images and text
- Connect the core concepts to neural networks and graphical models
- Leverage the Python scikit-learn library and other powerful tools
The full text downloaded to your computer
With eBooks you can:
- search for key concepts, words and phrases
- make highlights and notes as you study
- share your notes with friends
eBooks are downloaded to your computer and accessible either offline through the Bookshelf (available as a free download), available online and also via the iPad and Android apps.
Upon purchase, you will receive via email the code and instructions on how to access this product.
Time limit
The eBooks products do not have an expiry date. You will continue to access your digital ebook products whilst you have your Bookshelf installed.
Machine Learning with Python for Everyone
592Machine Learning with Python for Everyone
592eBook
Related collections and offers
Product Details
ISBN-13: | 9780134845647 |
---|---|
Publisher: | Pearson Education |
Publication date: | 07/30/2019 |
Series: | Addison-Wesley Data & Analytics Series |
Sold by: | Barnes & Noble |
Format: | eBook |
Pages: | 592 |
Sales rank: | 294,666 |
File size: | 57 MB |
Note: | This product may take a few minutes to download. |
Age Range: | 18 Years |