LOCAL ZETA REGULARIZATION AND THE SCALAR CASIMIR EFFECT: A General Approach based on Integral Kernels
Zeta regularization is a method to treat the divergent quantities appearing in several areas of mathematical physics and, in particular, in quantum field theory; it is based on the fascinating idea that a finite value can be ascribed to a formally divergent expression via analytic continuation with respect to a complex regulating parameter.This book provides a thorough overview of zeta regularization for the vacuum expectation values of the most relevant observables of a quantized, neutral scalar field in Minkowski spacetime; the field can be confined to a spatial domain, with suitable boundary conditions, and an external potential is possibly present. Zeta regularization is performed in this framework for both local and global observables, like the stress-energy tensor and the total energy; the analysis of their vacuum expectation values accounts for the Casimir physics of the system. The analytic continuation process required in this setting by zeta regularization is deeply linked to some integral kernels; these are determined by the fundamental elliptic operator appearing in the evolution equation for the quantum field. The book provides a systematic illustration of these connections, devised as a toolbox for explicit computations in specific configurations; many examples are presented. A comprehensive account is given of the existing literature on this subject, including the previous work of the authors.The book will be useful to anyone interested in a mathematically sound description of quantum vacuum effects, from graduate students to scientists working in this area.
1138595589
LOCAL ZETA REGULARIZATION AND THE SCALAR CASIMIR EFFECT: A General Approach based on Integral Kernels
Zeta regularization is a method to treat the divergent quantities appearing in several areas of mathematical physics and, in particular, in quantum field theory; it is based on the fascinating idea that a finite value can be ascribed to a formally divergent expression via analytic continuation with respect to a complex regulating parameter.This book provides a thorough overview of zeta regularization for the vacuum expectation values of the most relevant observables of a quantized, neutral scalar field in Minkowski spacetime; the field can be confined to a spatial domain, with suitable boundary conditions, and an external potential is possibly present. Zeta regularization is performed in this framework for both local and global observables, like the stress-energy tensor and the total energy; the analysis of their vacuum expectation values accounts for the Casimir physics of the system. The analytic continuation process required in this setting by zeta regularization is deeply linked to some integral kernels; these are determined by the fundamental elliptic operator appearing in the evolution equation for the quantum field. The book provides a systematic illustration of these connections, devised as a toolbox for explicit computations in specific configurations; many examples are presented. A comprehensive account is given of the existing literature on this subject, including the previous work of the authors.The book will be useful to anyone interested in a mathematically sound description of quantum vacuum effects, from graduate students to scientists working in this area.
58.99 In Stock
LOCAL ZETA REGULARIZATION AND THE SCALAR CASIMIR EFFECT: A General Approach based on Integral Kernels

LOCAL ZETA REGULARIZATION AND THE SCALAR CASIMIR EFFECT: A General Approach based on Integral Kernels

LOCAL ZETA REGULARIZATION AND THE SCALAR CASIMIR EFFECT: A General Approach based on Integral Kernels

LOCAL ZETA REGULARIZATION AND THE SCALAR CASIMIR EFFECT: A General Approach based on Integral Kernels

eBook

$58.99  $78.00 Save 24% Current price is $58.99, Original price is $78. You Save 24%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Zeta regularization is a method to treat the divergent quantities appearing in several areas of mathematical physics and, in particular, in quantum field theory; it is based on the fascinating idea that a finite value can be ascribed to a formally divergent expression via analytic continuation with respect to a complex regulating parameter.This book provides a thorough overview of zeta regularization for the vacuum expectation values of the most relevant observables of a quantized, neutral scalar field in Minkowski spacetime; the field can be confined to a spatial domain, with suitable boundary conditions, and an external potential is possibly present. Zeta regularization is performed in this framework for both local and global observables, like the stress-energy tensor and the total energy; the analysis of their vacuum expectation values accounts for the Casimir physics of the system. The analytic continuation process required in this setting by zeta regularization is deeply linked to some integral kernels; these are determined by the fundamental elliptic operator appearing in the evolution equation for the quantum field. The book provides a systematic illustration of these connections, devised as a toolbox for explicit computations in specific configurations; many examples are presented. A comprehensive account is given of the existing literature on this subject, including the previous work of the authors.The book will be useful to anyone interested in a mathematically sound description of quantum vacuum effects, from graduate students to scientists working in this area.

Product Details

ISBN-13: 9789813225015
Publisher: World Scientific Publishing Company, Incorporated
Publication date: 10/06/2017
Sold by: Barnes & Noble
Format: eBook
Pages: 276
File size: 28 MB
Note: This product may take a few minutes to download.
From the B&N Reads Blog

Customer Reviews