Issac Newton: A Biography

Issac Newton: A Biography

by Estefania Wenger
Issac Newton: A Biography

Issac Newton: A Biography

by Estefania Wenger

Paperback

$9.08 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Related collections and offers


Overview

Sir Isaac Newton was an English mathematician, astronomer, and physicist who is widely recognised as one of the most influential scientists of all time and a key figure in the scientific revolution. This book gives an account of his life and theories.


Product Details

ISBN-13: 9789386367297
Publisher: Vij Books India Private Limited
Publication date: 02/22/2017
Pages: 88
Product dimensions: 5.50(w) x 8.50(h) x 0.21(d)

About the Author

Wenger, is a retired journalist and loves writing about famous historical figures.

Read an Excerpt

CHAPTER 1

Early Life

Isaac Newton was born on Christmas Day, 25 December 1642 Old Style (which is 4 January 1643 on the Gregorian calendar, which is now used) at Woolsthorpe Manor in Woolsthorpe-by-Colsterworth, a hamlet in the county of Lincolnshire. At the time of Newton's birth, England had not adopted the Gregorian calendar and therefore his date of birth was recorded as Christmas Day, according to the Julian calendar.

Newton was born three months after the death of his father, a prosperous farmer also named Isaac Newton. Isaac Newton, Sr. was described as a "wild and extravagant man." Born prematurely, young Isaac was a small child; his mother Hannah Ayscough reportedly said that he could have fitted inside a quart mug. When Newton was three, his mother remarried and went to live with her new husband, the Reverend Barnabus Smith, leaving her son in the care of his maternal grandmother, Margery Ayscough. The young Isaac disliked his stepfather and held some enmity towards his mother for marrying him, as revealed by this entry in a list of sins committed up to the age of 19: "Threatening my father and mother to burn them and the house over them." Later on his mother returned after her husband died.

From the ages of 12 through 17, he was educated at The King's School, Grantham (where his signature can still be seen upon a library window sill). He was removed from school, and by October 1659, he was to be found at Woolsthorpe-by-Colsterworth, where his mother, widowed by now for a second time, attempted to make a farmer of him. He hated farming. Henry Stokes, master at the King's School, persuaded his mother to send him back to school so that he might complete his education. This he did at the age of eighteen, achieving an admirable final report.

In June 1661, he was admitted to Trinity College, Cambridge as a sizar — a sort of work-study role. At that time, the college's teachings were based on those of Aristotle, whom Newton supplemented with modern philosophers such as Descartes and astronomers such as Copernicus, Galileo, and Kepler. In 1665, he discovered the generalised binomial theorem and began to develop a mathematical theory that later became infinitesimal calculus. Soon after Newton had obtained his degree in August 1665, the University closed down as a precaution against the Great Plague. Although he had been undistinguished as a Cambridge student, Newton's private studies at his home in Woolsthorpe over the subsequent two years saw the development of his theories on calculus, optics and the law of gravitation. In 1667 he returned to Cambridge as a fellow of Trinity.

Newton had stated that when he had purchased a book on astrology at Stourbridge fair, near Cambridge, he was unable, on account of his ignorance of trigonometry, to understand a figure of the heavens which was drawn in the book. He therefore bought an English edition of Euclid's Elements which included an index of propositions, and, having turned to two or three which he thought might be helpful, found them so obvious that he dismissed it "as a trifling book", and applied himself to the study of René Descartes' Geometry. It is reported that in his examination for a scholarship at Trinity, to which he was elected on 28 April 1664, he was examined in Euclid by Dr. Isaac Barrow, who was disappointed in Newton's lack of knowledge on the subject. Newton was convinced to read the Elements again with care, and formed a more favourable estimate of Euclid's merit.

The study of Descartes's Geometry seems to have inspired Newton with a love of the subject, and introduced him to higher mathematics. In a small commonplace book, dated January 1664, there are several articles on angular sections, and the squaring of curves and "crooked lines that may be squared", several calculations about musical notes, geometrical propositions from François Viète and Frans van Schooten, annotations out of John Wallis's Arithmetic of Infinities, together with observations on refraction, on the grinding of "spherical optic glasses", on the errors of lenses and the method of rectifying them, and on the extraction of all kinds of roots, particularly those "in affected powers." In this same book the following entry made by Newton himself, many years afterwards, gives a further account of the nature of his work during the period when he was an undergraduate:

July 4, 1699. By consulting an account of my expenses at Cambridge, in the years 1663 and 1664, I find that in the year 1664 a little before Christmas, I being then Senior Sophister, bought Schooten's Miscellanies and Cartes' Geometry (having read this Geometry and Oughtred's Clavis clean over half a year before), and borrowed Wallis' works, and by consequence made these annotations out of Schooten and Wallis, in winter between the years 1664 and 1665. At such time I found the method of Infinite Series; and in summer 1665, being forced from Cambridge by the plague, I computed the area of the Hyperbola at Boothby, in Lincolnshire, to two and fifty figures by the same method.

He formulated the three laws of motion:

1. Every object in a state of uniform motion tends to remain in that state of motion unless an external force is applied to it.

2. The relationship between an object's mass m, its acceleration a, and the applied force F is F = ma. Acceleration and force are vectors (as indicated by their symbols being displayed in slant bold font); in this law the direction of the force vector is the same as the direction of the acceleration vector.

3. For every action there is an equal and opposite reaction.

Academic career

In January 1665 Newton took the degree of Bachelor of Arts. The persons appointed (in conjunction with the proctors, John Slade of Catharine Hall, Cambridge, and Benjamin Pulleyn of Trinity College, Newton's tutor) to examine the questionists were John Eachard of Catharine Hall and Thomas Gipps of Trinity University. It is a curious accident that we have no information about the respective merits of the candidates for a degree in this year, since the "ordo senioritatis" of the Bachelors of Arts for the year is omitted in the "Grace Book." It is supposed that it was in 1665 that the method of fluxións (his word for "derivatives") first occurred to Newton's mind. There are several papers in Newton's handwriting bearing dates 1665 and 1666 in which the method is described, in some of which dotted or dashed letters are used to represent fluxions, and in some of which the method is explained without the use of dotted letters.

Both in 1665 and in 1666 Trinity College was dismissed on account of the Great Plague of London. On each occasion it was agreed, as shown by entries in the "Conclusion Book" of the college, dated 7 August 1665, and 22 June 1666, and signed by the master of the college, Dr Pearson, that all fellows and scholars who were dismissed on account of the pestilence be allowed one month's commons. Newton must have left college before August 1665, as his name does not appear in the list of those who received extra commons on that occasion, and he tells us himself in the extract from his commonplace book already quoted that he was "forced from Cambridge by the plague" in the summer of that year. He was elected a fellow of his college on 5 October 1667. There were nine vacancies, one caused by the death of Abraham Cowley the previous summer, and the nine successful candidates were all of the same academic standing. A few weeks after his election to a fellowship Newton went to Lincolnshire, and did not return to Cambridge till the February following. In March 1668 he took his M.A. degree.

During the years 1666 to 1669 Newton's studies were very diverse. It is known that he bought prisms and lenses on two or three occasions, and also chemicals and a furnace, apparently for chemical experiments; but he also employed part of his time on the theory of fluxions and other branches of pure mathematics. He wrote a paper, De Analysi per Aequationes Numero Terminorum Infinitas, which he put, probably in June 1669, into the hands of Isaac Barrow (then Lucasian Professor of Mathematics), at the same time giving him permission to communicate its contents to their common friend John Collins (1624–1683), a mathematician of no mean order. Barrow did this on 31 July 1669, but kept the name of the author a secret, and merely told Collins that he was a friend staying at Cambridge, who had a powerful genius for such matters. In a subsequent letter on 20 August Barrow expressed his pleasure at hearing the favourable opinion which Collins had formed of the paper, and added, "the name of the author is Newton, a fellow of our college, and a young man, who is only in his second year since he took the degree of Master of Arts, and who, with an unparalleled genius (eximio quo est acumine), has made very great progress in this branch of mathematics". Shortly afterwards Barrow resigned his chair, and was instrumental in securing Newton's election as his successor.

Newton was elected Lucasian professor on 29 October 1670. It was his duty as professor to lecture at least once a week in term time on some portion of geometry, arithmetic, astronomy, geography, optics, statics, or some other mathematical subject, and also for two hours in the week to allow an audience to any student who might come to consult with the professor on any difficulties he had met with. The subject which Newton chose for his lectures was optics. These lectures did little to expand his reputation, as they were apparently remarkably sparsely attended; frequently leaving Newton to lecture at the walls of the classroom. An account of their content was presented to the Royal Society in the spring of 1672.

The composition of white light

According to Alfred Rupert Hall the first practical reflecting telescope was built by Newton in 1668. Later on such prototype for a design came to be called a Newtonian telescope or Newton's reflector. On 21 December 1671 he was proposed as a candidate for admission to the Royal Society by Dr Seth Ward, bishop of Salisbury, and on 11 January 1672 he was elected a fellow of the Society. At the meeting at which Newton was elected, he read a description of a reflecting telescope which he had invented, and "it was ordered that a letter should be written by the secretary to Mr Newton to acquaint him of his election into the Society, and to thank him for the communication of his telescope, and to assure him that the Society would take care that all right should be done him with respect to this invention."

In his reply to the secretary on 18 January 1672, Newton writes: "I desire that in your next letter you would inform me for what time the society continue their weekly meetings; because, if they continue them for any time, I am purposing them to be considered of and examined an account of a philosophical discovery, which induced me to the making of the said telescope, and which I doubt not but will prove much more grateful than the communication of that instrument being in my judgment the oddest if not the most considerable detection which hath hitherto been made into the operations of nature."

This promise was fulfilled in a communication which Newton addressed to Henry Oldenburg, the secretary of the Royal Society, on 6 February 1672, and which was read before the society two days afterwards. The whole is printed in No. 80 of the Philosophical Transactions. Newton's "philosophical discovery" was the realisation that white light is composed of a spectrum of colours. He realised that objects are coloured only because they absorb some of these colours more than others.

After he explained this to the Society, he proceeded: "When I understood this, I left off my aforesaid glass works; for I saw, that the perfection of telescopes was hitherto limited, not so much for want of glasses truly figured according to the prescriptions of Optics Authors (which all men have hitherto imagined), as because that light itself is a heterogeneous mixture of differently refrangible rays. So that, were a glass so exactly figured as to collect any one sort of rays into one point, it could not collect those also into the same point, which having the same incidence upon the same medium are apt to suffer a different refraction. Nay, I wondered, that seeing the difference of refrangibility was so great, as I found it, telescopes should arrive to that perfection they are now at." This "difference in refrangibility" is now known as dispersion.

He then points out why "the object-glass of any telescope cannot collect all the rays which come from one point of an object, so as to make them convene at its focus in less room than in a circular space, whose diameter is the 50th part of the diameter of its aperture: which is an irregularity some hundreds of times greater, than a circularly figured lens, of so small a section as the object-glasses of long telescopes are, would cause by the unfitness of its figure, were light uniform." He adds: "This made me take reflections into consideration, and finding them regular, so that the Angle of Reflection of all sorts of Rays was equal to their Angle of Incidence; I understood, that by their mediation optic instruments might be brought to any degree of perfection imaginable, provided a reflecting substance could be found, which would polish as finely as glass, and reflect as much light, as glass transmits, and the art of communicating to it a parabolic figure be also attained. But these seemed very great difficulties, and I have almost thought them insuperable, when I further considered, that every irregularity in a reflecting superficies makes the rays stray 5 or 6 times more out of their due course, than the like irregularities in a refracting one; so that a much greater curiosity would be here requisite, than in figuring glasses for refraction.

"Amidst these thoughts I was forced from Cambridge by the intervening Plague, and it was more than two years before I proceeded further. But then having thought on a tender way of polishing, proper for metal, whereby, as I imagined, the figure also would be corrected to the last; I began to try, what might be effected in this kind, and by degrees so far perfected an instrument (in the essential parts of it like that I sent to London), by which I could discern Jupiter's 4 Concomitants, and showed them diverse times to two others of my acquaintance. I could also discern the Moon-like phase of Venus, but not very distinctly, nor without some niceness in disposing the instrument.

"From that time I was interrupted till this last autumn, when I made the other. And as that was sensibly better than the first (especially for day-objects), so I doubt not, but they will be still brought to a much greater perfection by their endeavours, who, as you inform me, are taking care about it at London."

Newton's theory of colour

After a remark that microscopes seem as capable of improvement as telescopes, he adds:

I shall now proceed to acquaint you with another more notable deformity in its Rays, where in the intermediate degrees of refrangibility. And this analogy twist colours, and refrangibility is very precise and strict; the rays always either exactly agreeing in both, or proportionally disagreeing in both.

Further on, after some remarks on the subject of compound colours, he says:

I might add more instances of this nature, but I shall conclude with this general one, that the colours of all natural bodies have no other origin than this, that they are variously qualified to reflect one sort of light in greater plenty than another. And this I have experimented in a dark room by illuminating those bodies with uncompounded light of diverse colours. For by that means any body may be made to appear of any colour. They have there no appropriate colour, but ever appear of the colour of the light cast upon them, but yet with this difference, that they are most brisk and vivid in the light of their own daylight colour. Minium appears there of any colour indifferently, with which 'tis illustrated, but yet most luminous in red, and so Bise appears indifferently of any colour with which 'tis illustrated, but yet most luminous in blue.

And there place a clear and colourless prism, to refract the entering light towards the further part of the room, which, as I said, will thereby be diffused into an oblong coloured image. Then place a lens of about three foot radius (suppose a broad object-glass of a three foot telescope), at the distance of about four or five foot from thence, through which all those colours may at once be transmitted, and made by its refraction to convene at a further distance of about ten or twelve feet. If at that distance you intercept this light with a sheet of white paper, you will see the colours converted into whiteness again by being mingled.

But it is requisite, that the prism and lens be placed steady, and that the paper, on which the colours are cast be moved to and fro; for, by such motion, you will not only find, at what distance the whiteness is most perfect but also see, how the colours gradually convene, and vanish into whiteness, and afterwards having crossed one another in that place where they compound whiteness, are again dissipated and severed, and in an inverted order retain the same colours, which they had before they entered the composition. You may also see, that, if any of the colours at the lens be intercepted, the whiteness will be changed into the other colours. And therefore, that the composition of whiteness be perfect, care must be taken, that none of the colours fall besides the lens.

(Continues…)


Excerpted from "Issac Newton"
by .
Copyright © 2017 Estefania Wenger.
Excerpted by permission of Vij Books India Pvt Ltd.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Table of Contents

Introduction , Early Life , Later Life , Religious views of Isaac Newton , Isaac Newton's occult studies, Isaac Newton in popular culture , Apple incident , About the Author

From the B&N Reads Blog

Customer Reviews