Introductory Biomaterials: An Overview of Key Concepts
Introductory Biomaterials enables undergraduate students in Biomedical, Chemical, Materials and other relevant Engineering disciplines to become familiar with the key concepts of Biomaterials principles: biocompatibility, structure-property-applications relationships, mechanical response of natural tissues, and cellular pathways for tissue-material ingrowth. Written in a clear, concise manner that weds theory with applications, this book helps students to understand the often intricate relationships between materials the implant devices that are made from them, and how the human body reacts to them. The book includes such concepts as requirements for metals, alloys, and ceramic materials to be used in load bearing implants (corrosion concepts, stress shielding, mechanical properties, composition), what properties of polymers impact their use in medicine (leaching and swelling, creep and stress relaxation); the tissue response to biomaterials, concepts related to drug delivery applications (polymer degradation, encapsulation), and tissue engineering (scaffold porosity, diffusion of nutrients, mechanical properties).

1139006019
Introductory Biomaterials: An Overview of Key Concepts
Introductory Biomaterials enables undergraduate students in Biomedical, Chemical, Materials and other relevant Engineering disciplines to become familiar with the key concepts of Biomaterials principles: biocompatibility, structure-property-applications relationships, mechanical response of natural tissues, and cellular pathways for tissue-material ingrowth. Written in a clear, concise manner that weds theory with applications, this book helps students to understand the often intricate relationships between materials the implant devices that are made from them, and how the human body reacts to them. The book includes such concepts as requirements for metals, alloys, and ceramic materials to be used in load bearing implants (corrosion concepts, stress shielding, mechanical properties, composition), what properties of polymers impact their use in medicine (leaching and swelling, creep and stress relaxation); the tissue response to biomaterials, concepts related to drug delivery applications (polymer degradation, encapsulation), and tissue engineering (scaffold porosity, diffusion of nutrients, mechanical properties).

99.95 In Stock
Introductory Biomaterials: An Overview of Key Concepts

Introductory Biomaterials: An Overview of Key Concepts

Introductory Biomaterials: An Overview of Key Concepts
Introductory Biomaterials: An Overview of Key Concepts

Introductory Biomaterials: An Overview of Key Concepts

Paperback

$99.95 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Related collections and offers


Overview

Introductory Biomaterials enables undergraduate students in Biomedical, Chemical, Materials and other relevant Engineering disciplines to become familiar with the key concepts of Biomaterials principles: biocompatibility, structure-property-applications relationships, mechanical response of natural tissues, and cellular pathways for tissue-material ingrowth. Written in a clear, concise manner that weds theory with applications, this book helps students to understand the often intricate relationships between materials the implant devices that are made from them, and how the human body reacts to them. The book includes such concepts as requirements for metals, alloys, and ceramic materials to be used in load bearing implants (corrosion concepts, stress shielding, mechanical properties, composition), what properties of polymers impact their use in medicine (leaching and swelling, creep and stress relaxation); the tissue response to biomaterials, concepts related to drug delivery applications (polymer degradation, encapsulation), and tissue engineering (scaffold porosity, diffusion of nutrients, mechanical properties).


Product Details

ISBN-13: 9780128092637
Publisher: Elsevier Science
Publication date: 11/04/2021
Series: Biomedical Engineering
Pages: 368
Product dimensions: 7.50(w) x 9.25(h) x 0.00(d)

About the Author

Lia Stanciu Ph.D., is a Professor of Materials and Biomedical Engineering at Purdue University. She received her Ph.D. in Materials Science in 2003 from University of California Davis. She is the instructor of an introductory Biomaterials class at Purdue, which she has been teaching since 2007. She has authored over 130 peer reviewed journal articles and her current research focuses on Biosensors and Biolelectronic Devices.

Susana Diaz-Amaya is a Ph.D. candidate in Materials Engineering at Purdue University with a strong background in bio-nanotechnology. She earned her bachelor’s degree in industrial microbiology from the Pontifical Javeriana University, Colombia in 2010. She joined academia in 2012 as an assistant professor at University of Tolima, and simultaneously worked for more than 5 years in the agroindustry as leader of R&D. Susana's current research interest is focused on the design, characterization and manufacturing of low-cost, novel nanomaterials for the high-throughput fabrication of biosensing platforms, and drug delivery systems.

Table of Contents

1. Introduction 2. Structure and bonding 3. Metallic biomaterials 4. Bioceramics 5. Polymeric biomaterials 6. Hard tissues and orhopedic soft tissues 7. Composite biomaterials 8. Tissue-biomaterials interactions 9. Orthopedic and dental biomedical devices 10. Soft tissue replacement and repair 11. Materials and devices for sensors and detectors: biocatalysts, bio imaging, and devices with integrated biological functionality 12. Biodegradable materials for medical applications

What People are Saying About This

From the Publisher

A comprehensive and in-depth introduction to biomaterials and their applications in modern medicine

From the B&N Reads Blog

Customer Reviews