Introduction to Plasma Physics: With Space, Laboratory and Astrophysical Applications
Introducing basic principles of plasma physics and their applications to space, laboratory and astrophysical plasmas, this new edition provides updated material throughout. Topics covered include single-particle motions, kinetic theory, magnetohydrodynamics, small amplitude waves in hot and cold plasmas, and collisional effects. New additions include the ponderomotive force, tearing instabilities in resistive plasmas and the magnetorotational instability in accretion disks, charged particle acceleration by shocks, and a more in-depth look at nonlinear phenomena. A broad range of applications are explored: planetary magnetospheres and radiation belts, the confinement and stability of plasmas in fusion devices, the propagation of discontinuities and shock waves in the solar wind, and analysis of various types of plasma waves and instabilities that can occur in planetary magnetospheres and laboratory plasma devices. With step-by-step derivations and self-contained introductions to mathematical methods, this book is ideal as an advanced undergraduate to graduate-level textbook, or as a reference for researchers.
1132543104
Introduction to Plasma Physics: With Space, Laboratory and Astrophysical Applications
Introducing basic principles of plasma physics and their applications to space, laboratory and astrophysical plasmas, this new edition provides updated material throughout. Topics covered include single-particle motions, kinetic theory, magnetohydrodynamics, small amplitude waves in hot and cold plasmas, and collisional effects. New additions include the ponderomotive force, tearing instabilities in resistive plasmas and the magnetorotational instability in accretion disks, charged particle acceleration by shocks, and a more in-depth look at nonlinear phenomena. A broad range of applications are explored: planetary magnetospheres and radiation belts, the confinement and stability of plasmas in fusion devices, the propagation of discontinuities and shock waves in the solar wind, and analysis of various types of plasma waves and instabilities that can occur in planetary magnetospheres and laboratory plasma devices. With step-by-step derivations and self-contained introductions to mathematical methods, this book is ideal as an advanced undergraduate to graduate-level textbook, or as a reference for researchers.
56.99 In Stock
Introduction to Plasma Physics: With Space, Laboratory and Astrophysical Applications

Introduction to Plasma Physics: With Space, Laboratory and Astrophysical Applications

Introduction to Plasma Physics: With Space, Laboratory and Astrophysical Applications

Introduction to Plasma Physics: With Space, Laboratory and Astrophysical Applications

eBook

$56.99  $75.99 Save 25% Current price is $56.99, Original price is $75.99. You Save 25%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers

LEND ME® See Details

Overview

Introducing basic principles of plasma physics and their applications to space, laboratory and astrophysical plasmas, this new edition provides updated material throughout. Topics covered include single-particle motions, kinetic theory, magnetohydrodynamics, small amplitude waves in hot and cold plasmas, and collisional effects. New additions include the ponderomotive force, tearing instabilities in resistive plasmas and the magnetorotational instability in accretion disks, charged particle acceleration by shocks, and a more in-depth look at nonlinear phenomena. A broad range of applications are explored: planetary magnetospheres and radiation belts, the confinement and stability of plasmas in fusion devices, the propagation of discontinuities and shock waves in the solar wind, and analysis of various types of plasma waves and instabilities that can occur in planetary magnetospheres and laboratory plasma devices. With step-by-step derivations and self-contained introductions to mathematical methods, this book is ideal as an advanced undergraduate to graduate-level textbook, or as a reference for researchers.

Product Details

ISBN-13: 9781316848661
Publisher: Cambridge University Press
Publication date: 02/20/2017
Sold by: Barnes & Noble
Format: eBook
File size: 15 MB
Note: This product may take a few minutes to download.

About the Author

Donald A. Gurnett is a pioneer in the study of waves in space plasmas, and has been active in teaching plasma physics and conducting experimental space physics research for over fifty years. He is currently the James A. Van Allen/R. J. Carver Professor of Physics at the University of Iowa and has received numerous awards for both his teaching and research. In 1994 he received the Iowa Board of Regents Award for Faculty Excellence, and in 1998 was elected a member of the National Academy of Sciences.
Amitava Bhattacharjee is a leading theoretical plasma physicist and has contributed to a wide range of subjects spanning fusion, space, and astrophysical plasma physics. He is currently a Professor of Astrophysical Sciences at Princeton University, New Jersey, and Head of the Princeton Plasma Physics Laboratory Theory Department. He is a Fellow of the American Physical Society, the American Association for the Advancement of Science, and the American Geophysical Union.

Table of Contents

Preface; 1. Introduction; 2. Characteristic parameters of a plasma; 3. Single particle motions; 4. Waves in a cold plasma; 5. Kinetic theory and the moment equations; 6. Magnetohydrodynamics; 7. MHD equilibria and stability; 8. Discontinuities and shock waves; 9. Electrostatic waves in a hot unmagnetized plasma; 10. Waves in a hot magnetized plasma; 11. Nonlinear effects; 12. Collisional processes; Appendix A. Symbols; Appendix B. Useful trigonometric identities; Appendix C. Vector differential operators; Appendix D. Vector calculus identities; Index.
From the B&N Reads Blog

Customer Reviews