Inorganic Chemistry / Edition 5

Inorganic Chemistry / Edition 5

ISBN-10:
0321811054
ISBN-13:
9780321811059
Pub. Date:
01/20/2013
Publisher:
Pearson Education
ISBN-10:
0321811054
ISBN-13:
9780321811059
Pub. Date:
01/20/2013
Publisher:
Pearson Education
Inorganic Chemistry / Edition 5

Inorganic Chemistry / Edition 5

$299.99
Current price is , Original price is $299.99. You
$299.99 
  • SHIP THIS ITEM
    This item is available online through Marketplace sellers.
  • PICK UP IN STORE
    Check Availability at Nearby Stores
  • SHIP THIS ITEM

    Temporarily Out of Stock Online

    Please check back later for updated availability.

This item is available online through Marketplace sellers.


Overview

With its updates to quickly changing content areas, a strengthened visual presentation and the addition of new co-author Paul Fischer, the new edition of this highly readable text is more educational and valuable than ever. Inorganic Chemistry, 5/e delivers the essentials of Inorganic Chemistry at just the right level for today’s classroom — neither too high (for novice readers) nor too low (for advanced readers). Strong coverage of atomic theory and an emphasis on physical chemistry provide a firm understanding of the theoretical basis of inorganic chemistry, while a reorganized presentation of molecular orbital and group theory highlights key principles more clearly.


Product Details

ISBN-13: 9780321811059
Publisher: Pearson Education
Publication date: 01/20/2013
Edition description: New Edition
Pages: 696
Product dimensions: 8.20(w) x 10.10(h) x 1.10(d)

About the Author

Gary L. Miessler received his Bachelors degree in Chemistry from the University of Tulsa and went on to attain his Ph.D from the University of Minnesota.  He is currently a Professor and Chair of Chemistry at St. Olaf College.

Read an Excerpt

PREFACE:

Preface

A new edition of a text can mean many things. To authors, it is a chance to try again to get it right and readable, and to revise outdated sections. To teachers and students, the new edition is potentially a more readable and useful text. For the author's family and friends, it is a chance to reclaim the attention that was devoted to the revising process. And finally, it means that the first edition was successful enough that a revision is necessary. We hope potential users will agree that this second edition retains the best features of the first edition and corrects any flaws.

As in the first edition of Inorganic Chemistry, we have chosen to emphasize molecular orbitals and symmetry in many aspects of bonding and reactivity. For example, we have devoted an early chapter, Chapter 4, to a discussion of molecular symmetry and introductory group theory, with examples of applications to molecular vibrations and chirality. In later chapters, we have used group theory in a variety of other applications, including molecular orbitals of main group compounds (Chapter 5) and coordination complexes (Chapter 10), and infrared spectra of organometallic compounds (Chapter 13). Additional applications of group theory are included in problems at the end of these and other chapters.

The early chapters provide a review of atomic theory (Chapter 2) and simple concepts of chemical bonding (Chapter 3). Following the introduction to group theory in Chapter 4, this theory is applied to the construction of molecular orbitals in Chapter 5. Chapter 6 provides a discussion of various acid-base concepts, emphasizing applications of molecularorbitals to acid-base interactions. Following the advice of many, we have added a chapter on solid state inorganic chemistry (Chapter 7). Chapter 8 summarizes some of the most important aspects of main group elements and their compounds. The rapid development of chemistry of the fullerenes has been recognized in a discussion of these molecules in Chapter 8 and of fullerene complexes in Chapter 13.

Chapters 9 through 14 are directed to the chemistry of the transition elements. The first four of these chapters deal, respectively, with the structures, bonding, electronic spectra, and reactions of classical transition metal complexes. We have followed reviewers' advice in reorganizing these chapters into this sequence. For this edition we have moved the discussion of terms and microstates into Chapter 11 so it immediately precedes its most common use, interpretation of spectra of coordination complexes. We have written the section on terms and microstates so it can still be used with the discussion of atomic spectra (Chapter 2) for those who might wish to follow the organization of the first edition.

Chapters 13 and 14 provide an introduction to organometallic compounds, their spectra, and reactions. Special attention has been given to catalytic cycles and their application to problems of chemical and industrial significance.

We believe that seeking similarities in the chemistry of different types of compounds can be an extremely valuable exercise, and we have therefore discussed some of these important parallels in Chapter 15, placing particular emphasis on the isolobal analogy developed by Roald Hoffmann and on similarities between main group and transition metal clusters.

Finally, no text would be complete without a discussion of the role of inorganic compounds in biological processes and in the environment. We have therefore devoted the final chapter, Chapter 16, to selected aspects of bioinorganic and environmental inorganic chemistry.

We have chosen the topics and the level of treatment that works well for us. Every teacher has favorite topics, as well as least-favorite ones. We hope that our choice of topics allows potential users to tailor the contents to their own courses. We welcome suggestions for improvements in future editions.

In addition to selecting the most appropriate topics, we have attempted to make our text as accessible to students as possible. We have therefore increased the number of examples and exercises within the chapters, with answers to examples included in the chapters and answers to exercises in Appendix A. To encourage use of the literature in inorganic chemistry, we have retained the extensive references in the first edition and have also increased the number of end-of-chapter problems taken from the chemical literature. We hope that these will be useful to both faculty and students using this text. At the end of each chapter is a list of suggested supplemental readings, with brief comments on each.

We want to express special appreciation to our students, who have submitted many suggestions for improving the clarity and accuracy of this edition. We especially appreciate one student, Beth Truesdale (now a Rhodes Scholar), who reviewed every chapter in detail and made hundreds of valuable suggestions. Thanks also to those from other schools who reviewed this book in preparation and offered many helpful suggestions:

Christopher W. Allen, University of Vermont
E. Joseph Billo, Boston College
Shelby Boardman, Carleton College
J. K. Burdett, University of Chicago
Robert L. Carter, University of Massachusetts, Boston
Michael Crowder, Miami University of Ohio
Edward Gillan, University of Iowa
Stephen Z. Goldberg, Adelphi University
Thomas Herrinton, University of San Diego
Brian Johnson, St. John's University, Minnesota
Tim Karpishin, University of California, San Diego
Robert M. Kren, University of Michigan, Flint
Lynn Koplitz, Loyola University
Robert G. Linck, Smith College
John Morrison, University of Illinois at Urbana-Champaign
Roy P. Planalp, University of New Hampshire
John Sheridan, Rutgers University
Joshua Telser, Roosevelt University
Ray Trautman, San Francisco State University
Steve Watton, Virginia Commonwealth University
John C. Woolcock, Indiana University of Pennsylvania

We are responsible for the final result, but it has been improved by their comments, even when we did not follow their suggestions.

At Prentice Hall, John Challice was instrumental in starting the revision and Matthew Hart in keeping it moving. And Celeste Clingan at Accu-color, Inc. shepherded us through the production process with grace and understanding.

Most of all, we thank Becky, Naomi, Rachel, and Marge for their patience, help, and love throughout this process.

Gary L. Miessler
Donald A. Tarr

Northfield, Minnesota

Table of Contents

  1. Introduction to Inorganic Chemistry.
  2. Atomic Structure.
  3. Simple Bonding Theory.
  4. Symmetry and Group Theory.
  5. Molecular Orbitals.
  6. Acid-Base and Donor-Acceptor Chemistry.
  7. The Crystalline Solid State.
  8. Chemistry of the Main Group Elements.
  9. Coordination Chemistry I: Structures and Isomers.
  10. Coordination Chemistry II: Bonding.
  11. Coordination Chemistry III: Electronic Spectra.
  12. Coordination Chemistry IV: Reactions and Mechanisms.
  13. Organometallic Chemistry.
  14. Organometallic Reactions and Catalysis.
  15. Parallels Between Main Group and Organometallic Chemistry.
Chapter 16, Bioinorganic and Environmental Chemistry, which was not printed in the Fifth Edition, is available electronically upon request from your Pearson rep.

Preface

PREFACE:

Preface

A new edition of a text can mean many things. To authors, it is a chance to try again to get it right and readable, and to revise outdated sections. To teachers and students, the new edition is potentially a more readable and useful text. For the author's family and friends, it is a chance to reclaim the attention that was devoted to the revising process. And finally, it means that the first edition was successful enough that a revision is necessary. We hope potential users will agree that this second edition retains the best features of the first edition and corrects any flaws.

As in the first edition of Inorganic Chemistry, we have chosen to emphasize molecular orbitals and symmetry in many aspects of bonding and reactivity. For example, we have devoted an early chapter, Chapter 4, to a discussion of molecular symmetry and introductory group theory, with examples of applications to molecular vibrations and chirality. In later chapters, we have used group theory in a variety of other applications, including molecular orbitals of main group compounds (Chapter 5) and coordination complexes (Chapter 10), and infrared spectra of organometallic compounds (Chapter 13). Additional applications of group theory are included in problems at the end of these and other chapters.

The early chapters provide a review of atomic theory (Chapter 2) and simple concepts of chemical bonding (Chapter 3). Following the introduction to group theory in Chapter 4, this theory is applied to the construction of molecular orbitals in Chapter 5. Chapter 6 provides a discussion of various acid-base concepts, emphasizing applications ofmolecularorbitals to acid-base interactions. Following the advice of many, we have added a chapter on solid state inorganic chemistry (Chapter 7). Chapter 8 summarizes some of the most important aspects of main group elements and their compounds. The rapid development of chemistry of the fullerenes has been recognized in a discussion of these molecules in Chapter 8 and of fullerene complexes in Chapter 13.

Chapters 9 through 14 are directed to the chemistry of the transition elements. The first four of these chapters deal, respectively, with the structures, bonding, electronic spectra, and reactions of classical transition metal complexes. We have followed reviewers' advice in reorganizing these chapters into this sequence. For this edition we have moved the discussion of terms and microstates into Chapter 11 so it immediately precedes its most common use, interpretation of spectra of coordination complexes. We have written the section on terms and microstates so it can still be used with the discussion of atomic spectra (Chapter 2) for those who might wish to follow the organization of the first edition.

Chapters 13 and 14 provide an introduction to organometallic compounds, their spectra, and reactions. Special attention has been given to catalytic cycles and their application to problems of chemical and industrial significance.

We believe that seeking similarities in the chemistry of different types of compounds can be an extremely valuable exercise, and we have therefore discussed some of these important parallels in Chapter 15, placing particular emphasis on the isolobal analogy developed by Roald Hoffmann and on similarities between main group and transition metal clusters.

Finally, no text would be complete without a discussion of the role of inorganic compounds in biological processes and in the environment. We have therefore devoted the final chapter, Chapter 16, to selected aspects of bioinorganic and environmental inorganic chemistry.

We have chosen the topics and the level of treatment that works well for us. Every teacher has favorite topics, as well as least-favorite ones. We hope that our choice of topics allows potential users to tailor the contents to their own courses. We welcome suggestions for improvements in future editions.

In addition to selecting the most appropriate topics, we have attempted to make our text as accessible to students as possible. We have therefore increased the number of examples and exercises within the chapters, with answers to examples included in the chapters and answers to exercises in Appendix A. To encourage use of the literature in inorganic chemistry, we have retained the extensive references in the first edition and have also increased the number of end-of-chapter problems taken from the chemical literature. We hope that these will be useful to both faculty and students using this text. At the end of each chapter is a list of suggested supplemental readings, with brief comments on each.

We want to express special appreciation to our students, who have submitted many suggestions for improving the clarity and accuracy of this edition. We especially appreciate one student, Beth Truesdale (now a Rhodes Scholar), who reviewed every chapter in detail and made hundreds of valuable suggestions. Thanks also to those from other schools who reviewed this book in preparation and offered many helpful suggestions:

Christopher W. Allen, University of Vermont
E. Joseph Billo, Boston College
Shelby Boardman, Carleton College
J. K. Burdett, University of Chicago
Robert L. Carter, University of Massachusetts, Boston
Michael Crowder, Miami University of Ohio
Edward Gillan, University of Iowa
Stephen Z. Goldberg, Adelphi University
Thomas Herrinton, University of San Diego
Brian Johnson, St. John's University, Minnesota
Tim Karpishin, University of California, San Diego
Robert M. Kren, University of Michigan, Flint
Lynn Koplitz, Loyola University
Robert G. Linck, Smith College
John Morrison, University of Illinois at Urbana-Champaign
Roy P. Planalp, University of New Hampshire
John Sheridan, Rutgers University
Joshua Telser, Roosevelt University
Ray Trautman, San Francisco State University
Steve Watton, Virginia Commonwealth University
John C. Woolcock, Indiana University of Pennsylvania

We are responsible for the final result, but it has been improved by their comments, even when we did not follow their suggestions.

At Prentice Hall, John Challice was instrumental in starting the revision and Matthew Hart in keeping it moving. And Celeste Clingan at Accu-color, Inc. shepherded us through the production process with grace and understanding.

Most of all, we thank Becky, Naomi, Rachel, and Marge for their patience, help, and love throughout this process.

Gary L. Miessler
Donald A. Tarr

Northfield, Minnesota

From the B&N Reads Blog

Customer Reviews