Ideal MHD

Ideal MHD

by Jeffrey P. Freidberg
ISBN-10:
1107006252
ISBN-13:
9781107006256
Pub. Date:
06/26/2014
Publisher:
Cambridge University Press
ISBN-10:
1107006252
ISBN-13:
9781107006256
Pub. Date:
06/26/2014
Publisher:
Cambridge University Press
Ideal MHD

Ideal MHD

by Jeffrey P. Freidberg
$110.0
Current price is , Original price is $110.0. You
$110.00 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores
  • SHIP THIS ITEM

    Temporarily Out of Stock Online

    Please check back later for updated availability.


Overview

Comprehensive, self-contained, and clearly written, this successor to Ideal Magnetohydrodynamics (1987) describes the macroscopic equilibrium and stability of high temperature plasmas - the basic fuel for the development of fusion power. Now fully updated, this book discusses the underlying physical assumptions for three basic MHD models: ideal, kinetic, and double-adiabatic MHD. Included are detailed analyses of MHD equilibrium and stability, with a particular focus on three key configurations at the cutting-edge of fusion research: the tokamak, stellarator, and reversed field pinch. Other new topics include continuum damping, MHD stability comparison theorems, neoclassical transport in stellarators, and how quasi-omnigeneity, quasi-symmetry, and quasi-isodynamic constraints impact the design of optimized stellarators. Including full derivations of almost every important result, in-depth physical explanations throughout, and a large number of problem sets to help master the material, this is an exceptional resource for graduate students and researchers in plasma and fusion physics.

Product Details

ISBN-13: 9781107006256
Publisher: Cambridge University Press
Publication date: 06/26/2014
Edition description: Revised ed.
Pages: 740
Product dimensions: 6.80(w) x 9.70(h) x 1.50(d)

About the Author

Jeffrey Freidberg is KEPCO Professor Emeritus of Nuclear Science and Engineering at Massachusetts Institute of Technology and a former Associate Director of MIT's Plasma Science and Fusion Center. He is a Fellow of the APS and the AAAS, and the author of Plasma Physics and Fusion Energy (Cambridge University Press, 2007).

Table of Contents

1. Introduction; 2. The ideal MHD model; 3. General properties of ideal MHD; 5. Equilibrium: one-dimensional configurations; 6. Equilibrium: two-dimensional configurations; 7. Equilibrium: three-dimensional configurations; 8. Stability: general considerations; 9. Alternate MHD models; 10. MHD stability comparison theorems; 11. Stability: one-dimensional configurations; 12. Stability: multi-dimensional configurations; Appendix A. Heuristic derivation of the kinetic equation; Appendix B. The Braginskii transport coefficients; Appendix C. Time derivatives in moving plasmas; Appendix D. The curvature vector; Appendix E. Overlap limit of the high b and Greene–Johnson stellarator models; Appendix F. General form for q(y); Appendix G. Natural boundary conditions; Appendix H. Upper and lower bounds on dQKIN.
From the B&N Reads Blog

Customer Reviews