Geometry of Classical Fields
A canonical quantization approach to classical field theory, this text is suitable for mathematicians interested in theoretical physics as well as to theoretical physicists who use differential geometric methods in their modelling. Introduces differential geometry, the theory of Lie groups, and progresses to discuss the systematic development of a covariant Hamiltonian formulation of field theory. 1988 edition.
"1001052554"
Geometry of Classical Fields
A canonical quantization approach to classical field theory, this text is suitable for mathematicians interested in theoretical physics as well as to theoretical physicists who use differential geometric methods in their modelling. Introduces differential geometry, the theory of Lie groups, and progresses to discuss the systematic development of a covariant Hamiltonian formulation of field theory. 1988 edition.
19.49 In Stock
Geometry of Classical Fields

Geometry of Classical Fields

Geometry of Classical Fields

Geometry of Classical Fields

eBook

$19.49  $25.99 Save 25% Current price is $19.49, Original price is $25.99. You Save 25%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers

LEND ME® See Details

Overview

A canonical quantization approach to classical field theory, this text is suitable for mathematicians interested in theoretical physics as well as to theoretical physicists who use differential geometric methods in their modelling. Introduces differential geometry, the theory of Lie groups, and progresses to discuss the systematic development of a covariant Hamiltonian formulation of field theory. 1988 edition.

Product Details

ISBN-13: 9780486150444
Publisher: Dover Publications
Publication date: 11/30/2011
Sold by: Barnes & Noble
Format: eBook
Pages: 480
File size: 28 MB
Note: This product may take a few minutes to download.

Table of Contents

Part I: Differential Geometric Preliminaries. Manifolds and Lie Groups. Manifolds. Tangent Manifolds. Flows. The Theorem of Frobenius. Lie Groups. Immersed Lie Groups. Examples. Aut G for a Connected G. The Semidirect Product. Vector Bundles. Fibre Bundles. Vector Bundles. Construction of Vector Bundles. The Pull Back. Homotopy. &Lgr;mE. Section Modules of E. Orientation in E. The Jet Bundle. The Canonical 1-Form on JkN. Vertical and Horizontal Bundles. Connections. Riemmanian Structures on Vector Bundles. Elementary Differential Geometry. The Lemma of Poincaré. Induced Riemannian Metrics, Covariant Derivatives and Second Fundamental Tensors on Submanifolds of Euclidean Spaces. Linear Connections, Sprays, Geodesics and the Exponential Map. The Canonical One- and Two-Form on T*M, Riemannian Spray and the Levi-Cività Connection. Curvature Tensors and the Bianchi Identity. Embeddings, the Weingarten Map and the Second Fundamental Form, the Equations of Gauss and Codazzi, the Mean and the Gaussian Curvature. Geodesic Spray of a Right resp. Left Invariant Metric on a Lie Group. Principal Bundles and Connections. Preliminaries. Principal Bundles. Examples. Associated Bundles. Connections. The Special Case G → G/H. Invariant Connections on Principal Bundles. Linear Connections in Vector Bundles. Connection Forms and Linear Connections. Function Space. Space of Functions and Distributions. Globally Defined Function Spaces. Remarks on Calculus. Ck(M,N) as a Manifold. Examples of Manifolds of Maps and Some Tangent Mappings. Gauge Groups. On the Deformation of Differentials of Immersions.

Part II: Covariant Hamiltonian Dynamics. Non-Relativistic Dynamics. Action Principle. Canonical Hamiltonian Formalism. Symplectic Manifolds and Poisson Algebras. Degenerate Lagrangians and Constraints. Cartan Equations and Symmetries. Generalized Hamiltonian Dynamics. Constraints and Reduction. Dynamics of Classical Fields. Action Principle and Field Equations. Boundary Conditions, Symmetries and Conservation Laws. Cartan Formalism in the Space of Cauchy Data. Hamiltonian Formulation. Constraints and Reduction. Yang-Mills Theory. Field Equations. Gauge Transformations and Conservation Laws. Hamiltonian Formulation. Minkowski Space. Maxwell-Dirac Theory. Yang-Mills Charges. General Relativity. Field Equations. Conservation Laws and Constraints. Hamiltonian Formulation. Asymptotically Flat Space Times. References. Index. Glossary.

From the B&N Reads Blog

Customer Reviews