Eureka: How Invention Happens

Eureka: How Invention Happens

by Gavin Weightman
Eureka: How Invention Happens

Eureka: How Invention Happens

by Gavin Weightman

eBook

$22.99  $30.00 Save 23% Current price is $22.99, Original price is $30. You Save 23%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Tracing the long pre-history of five twentieth-century inventions which have transformed our lives, Gavin Weightman reveals a fantastic cast of scientists and inspired amateurs whose ingenuity has given us the airplane, television, bar code, personal computer, and mobile phone. Not one of these inventions can be attributed to a lone genius who experiences a moment of inspiration. Nearly all innovations exist in the imagination before they are finally made to work by the hard graft of inventors who draw on the discoveries of others.   While the discoveries of scientists have provided vital knowledge which has made innovation possible, it is a revelation of Weightman’s study that it is more often than not the amateur who enjoys the “eureka moment” when an invention works for the first time. Filled with fascinating stories of struggle, rivalry, and the ingenuity of both famous inventors and hundreds of forgotten people, Weightman’s captivating work is a triumph of storytelling that offers a fresh take on the making of our modern world.


Product Details

ISBN-13: 9780300216059
Publisher: Yale University Press
Publication date: 07/23/2015
Sold by: Barnes & Noble
Format: eBook
Pages: 280
File size: 4 MB

About the Author

Gavin Weightman is a journalist, historian, and former documentary filmmaker. He has published more than twenty books, including Children of the Light: How Electricity Changed Britain Forever. He lives in London.

Read an Excerpt

Eureka

How Invention Happens


By Gavin Weightman

Yale UNIVERSITY PRESS

Copyright © 2015 Gavin Weightman
All rights reserved.
ISBN: 978-0-300-21605-9



CHAPTER 1

THE BIRD MEN


In the morning they raised the red flag to call the surfmen from the Life-Saving Station to help them haul the flyer into position on the windswept sand of Kitty Hawk. These lifeboatmen came with a sense of excitement for they had watched the evolution of this strange machine, which looked more like a giant winged insect than a bird. They were to be the only witnesses of an event rarely matched in the history of invention. For a long time the achievement was not believed; and the brothers themselves knew that it was only a beginning. Later, in the wooden shed they had built on the North Carolina coast, Orville Wright wrote in his diary:

At just 12 o'clock Will started on the fourth and last trip. The machine started off with its ups and downs as it had before, but by the time he had gone over three or four hundred feet he had it under much better control, and was travelling on a fairly even course. It proceeded in this manner till it reached a small hummock out about 800 feet from the starting ways when it began its pitching again and suddenly darted to the ground. The front rudder frame was really badly broken up but the main frame suffered none at all. The distance over the ground was 852 feet in 59 seconds ...


That day, 17 December 1903, Orville and his older brother Wilbur were the first in the world to fly a powered, piloted heavier-than-air machine. It was the fourth year they had camped out on the remote settlement of Kitty Hawk for several months, kept awake at night by the gales that constantly battered the coast, often frozen, short of food and, when a summer wind blew from the swamps, attacked by clouds of mosquitoes. This was their testing ground, carefully chosen for some of the very features that discomforted them. The wind gave them buoyancy in the air, the sand dunes offered soft landings, the shifting wind sculptured Kill Devil Hill, their glider launching pad. The soaring buzzards and eagles were an inspiration and models of aeronautical perfection.

The first year at Kitty Hawk they did not abandon their bicycle business in Dayton, Ohio until the summer season was over. Next year they brought in a mechanic, Charles E. Taylor, to look after the shop so that they could get away in summer. Their sister Katherine helped out as well. It was the craze for cycling which gave them the funds to experiment with flying machines and much of the equipment and expertise for building them. Between their first visit to the North Carolina coast in 1900 and the winter of 1903 they had relived the history of flight, reading all they could find, idolising some of those who had gone before. They worked methodically from kites to gliders and finally on their powered Flyer propelled by a lightweight petrol engine. The brothers always rested on Sundays as their father, Milton, was a bishop in the United American Church and would not have approved had they failed to observe the Sabbath.

On 14 December the brothers had tossed a coin to decide who should take the first ever powered flight. Wilbur won, but failed to control the flyer and it crashed. They had it repaired by the 17th when the conditions were not ideal for further tests: a bitter wind was gusting dangerously. Whenever a problem arose the brothers discussed it and came to a firm conclusion. On this day they decided they wanted to be home for Christmas and they would risk another attempt. As Wilbur had taken the first flight three days before, it was Orville's turn to take off but he was airborne for only 12 seconds. With their helpers they hauled the machine back and set it up for Wilbur to pilot. He managed about 12 seconds as well. On his next flight Orville rose about 14 feet off the ground before he was knocked sideways by a gust of wind. Finally, about midday, Wilbur climbed back on to the flyer, lying across the lower wing. When the propellers mounted at the rear of the flyer provided sufficient power, Wilbur launched himself into the stiff wind. This was the moment of triumph: a flight lasting one second short of a minute.

They took the machine back to their camp and were discussing the success of the flights when the wind turned the flyer over, so there could be no more attempts that day. The brothers had lunch and then set out on foot across the dunes to the weather station at Kitty Hawk about three miles from their camp. From here they were able to send a telegram home to their father in Dayton, Ohio. The cable, with Orville's name misspelled and the flight two seconds short, was wired first to Norfolk, Virginia on the weather station's government line. Addressed to Bishop M. Wright it read simply:

Success four flights thursday morning all against twenty one mile wind started from level with engine power alone average speed through air thirty one miles longest 57 seconds inform Press home Christmas. Orevelle Wright.


There has been a long dispute about how this telegram got leaked to a local newspaper and how the information in the subsequent account of the flight was put together. It seems that Harry Moore, a 'rookie' reporter on the local Virginian-Pilot, had got to know John T. Daniels, one of the surfmen, after a chance meeting in a cafe in the town of Monteo. Moore was told about the crazy guys trying to fly out at Kitty Hawk. He asked to be kept informed about any success they might have and went to meet Wilbur and Orville, who did not know he was a journalist. Moore got a telegram from Daniels and another surfman saying the brothers had flown that day. Moore's editor, Keville Glennan, did not believe the story and spiked it. However, he changed his mind when the telegram to Milton Wright was leaked to another reporter, Ed Dean, when he made a routine call to the Kitty Hawk weather bureau. Everyone knew that attempts were being made in America and Europe to get a powered, manned, heavier-than-air flying machine off the ground. The ambition was widely dismissed as futile but this looked like a breakthrough. Editor and reporters put their heads together and concocted a story for which they had no more hard information than was contained in the cryptic telegram to the Bishop. Perhaps the wording of the telegram had started some Chinese whispers in the weather station for on 18 December the Virginian-Pilot ran the front-page headlines:

Flying Machine Soars Three Miles in Teeth of High Wind Over
Sand Hills and Waves on Carolina Coast

No Balloon Attached to Aid it
Three Years of Hard, Secret Work by Two Ohio Brothers
Crowned with Success
ACCOMPLISHED WHAT LANGLEY FAILED AT
With Man as Passenger Huge Machine Flies Like Bird Under
Perfect Control
BOX KITE PRINCIPLE WITH TWO PROPELLERS


The description of the flight was wildly inaccurate but there was a kernel of truth in the story: 'While the United States government has been spending thousands of dollars in an effort to make practicable the ideas of Professor Langley of the Smithsonian Institute, Wilbur and Orville Wright, two brothers, natives of Dayton, O., have quietly, even secretly, perfected their invention, and put it to a successful test.' The professor was Samuel Pierpont Langley, a prominent American engineer whose government-backed steam-powered 'aerodromes' had plunged ignominiously into the Potomac River at the moment of launching, for reasons which will become clear.

The finale of the Virginian-Pilot's fantasy report on the Kitty Hawk flight had Wilbur selecting a suitable place to land where his flyer 'settled, like some big bird, in the chosen spot. "Eureka" he cried like the alchemist of old.' The flights that day certainly represented the 'eureka moment' for the Wright brothers, but it would have been quite out of character for either of them to make such an exclamation. They had a remarkable formality about them, dressing in wing collars and smart suits and looking for all the world like two comedians from a silent movie. But they were excited. Though the best flight was short of a minute they knew they had made the breakthrough.

After the first newspaper reports were published, all repeating the flight of fancy concocted by the Virginian-Pilot, there were one or two enquiries back in Dayton, Ohio where Bishop Milton was handling publicity. He made a brief statement expressing his great pride in the achievement of his two youngest sons:

Wilbur is 36, Orville 32, and they are as inseparable as twins. For several years they have read up on aeronautics as a physician would read his books, and they have studied, discussed, and experimented together. Natural workmen, they have invented, constructed and operated their gliders, and finally their 'Wright Flyer' jointly, all at their personal expense. About equal credit is due each [written on 22 December 1903].


In the end, not much notice was taken of this historic flight. Many did not believe it had taken place. Others were unimpressed with a flight that had lasted only 59 seconds. What use was that? The brothers abandoned the Kitty Hawk testing ground and decided to trial new and better models nearer to home. Until the success of the flights on 17 December they had regarded their experimental gliding and attempts at powered flight as a pleasurable pastime. They now reasoned that to take it further and to create a Wright Flyer that had some practical use, they would have to invest in it much more heavily. As Wilbur put it, they had 'reached a fork in the road'. Either they would go back to their bicycle business, which made them a decent living, and treat flying as a hobby, or they could make aeronautics their main business.

The brothers were aware that the desire to emulate the majestic ability of the great soaring birds to stay airborne almost effortlessly had doomed countless pioneers of flight to disappointment and not a few to death. They were not interested in getting airborne by ballooning, nor did they regard the airship as a rival to their Flyer. For true flight, men would somehow have to get airborne on wings. Few believed it possible, with or without some form of power: the shattered bodies of what an aviation historian has called the 'tower jumpers' were grim evidence of the futility of man's ambition to fly. However, there was one very early student of aeronautics who got so close to finding the solution that some accord him, rather than the Wright Brothers, the title of inventor of the aeroplane though he lived at a time when the technology to turn theory into practice did not exist.


* * *

Some time in 1808 news reached Sir George Cayley of Brompton Hall near Scarborough in Yorkshire that an ingenious Viennese clockmaker called Jacob Degen had confounded the scientific wisdom of the day and had actually taken to the air under the power of his own arms in a machine called an ornithopter. The first reports were of Degen flying in a high-ceilinged building in Vienna to the delight of his friends and onlookers. He had strapped to each arm lightweight wings, which he flapped. As these did not provide enough power to get him off the ground he devised a hoist using a counterweight to get airborne and then bounced around rather like a bird on string. After a few trial runs Degen took his ornithopter out into the open where it caused a sensation. Illustrations were circulated of the pioneer aviator in the air and reports assured sceptical readers that Degen had indeed flown like a bird.

This account of manned flight was encouraging for Sir George, who had turned his richly inventive mind to the problem of flight a number of years earlier and had conducted a good deal of research into the science of aerodynamics. Some aspects of this subject were regarded as worthy of study by the scientific establishment of the day: for example, ballistics, research into the most favourable shape for a bullet, or the relative effectiveness of different designs of windmill sails. But to take seriously the notion that a winged man might fly was to invite ridicule.

As a young man, Cayley had witnessed the craze for ballooning, which was popular in the early nineteenth century. However, this form of aerial travel had an obvious limitation, which was put succinctly by Dr Johnson in a letter written in 1784: 'In amusement, mere amusement, I am afraid it must end, for I do not find that its course can be directed so that it should serve any useful purposes of communication.' It was a view Cayley shared. His interest in aviation had been inspired not by the balloonists but by a little toy ornithopter which he had made to a well-established design and which rose to the ceiling when its feather propellers were spun by a tug of a thread. Unlike a balloon, this was a heavier-than-air machine and its flight more closely mimicked that of a bird.

Believing that Degen the clockmaker had shown that man could fly and that his own endeavours could no longer be dismissed as pointless, Cayley submitted three pieces to the obscure and short-lived Journal of Natural Philosophy, Chemistry and the Arts, setting out his aerodynamic theories. The first article, dated 6 September 1809, began: 'Sir, I observed in your Journal for last month that a watchmaker at Vienna, of the name of Degen, has succeeded in raising himself in the air by mechanical means. ... It appears to me, and I am more confirmed by the success of the ingenious Mr Degen, that nothing more is necessary, in order to bring the following principles into common practical use, than the endeavours of skilful artificers, who may vary the means of execution, till those most convenient are attained.'

Noting that the idea of flying with artificial wings had for long been ridiculed, Cayley was confident that, through his own endeavours, he might be 'expediting the attainment of an object, that will in time be found of great importance to mankind: so much so, that a new era in society will commence, from the moment that aerial navigation is familiarly realised'. After reading Cayley's articles, a Fellow of the Royal Society, Sir Anthony Carlisle, wrote a private letter of support in which he explained that his own interest in aviation had been suppressed: 'The Wise, the Prudent and the Cunning Classes of Philosophers are too wary to commit themselves on subjects not backed by the cry of the multitude and had I been able to write such papers as you have printed, I should have been ridiculed and abused to my irreparable injury.'

As it turned out, Degen was a fraud. He had his comeuppance when, in 1812, he charged spectators in Paris a hefty fee to watch him flapping his wings as he leapt into the air. Omitted from the programme notes and the illustrations advertising the demonstrations was the fact that Degen was supported in the air by a hot air balloon without which he would have been firmly rooted to the ground. Reports in Le Journal de Paris described his denouement at the hands of angry spectators. It seems he was badly beaten and was subsequently lampooned in song and on stage, and nicknamed Vol-au-Vent after the hollow puff pastry case that was a favourite of French cuisine.

The favourable reference to Degen was cut by unknown censors from later reprints of Cayley's 1809 article, presumably to save him the embarrassment of being duped. However, Cayley himself does not appear to have been discouraged by the deception and held to his conviction that manned flight was possible, in doing so staking his claim as an inventor proverbially ahead of his time. Here was yet another example, it would appear, of a golden rule of invention: someone conceives of a workable, theoretical model long before the technologies that will make it practical have evolved. In the history of aviation, Sir George Cayley was the inventive genius who achieved that. He did not quite arrive at the solution the Wright brothers discovered: he preferred paddles to propellers to power his imaginary aircraft. It should remembered, however, that when he was designing his first aircraft the earliest steam-driven ships used paddles and the screw propeller did not become widely used at sea until the mid-nineteenth century. And, although he was fully aware of the problem, Cayley lacked the practical experience in flying a full-sized glider which would have enabled him to discover a means of stabilising an aeroplane in mid-air. But it is now generally agreed by generations of aeronautical historians that Cayley grasped the basics of heavier-than-air flight before anyone else and that at least some of his experimentation was of value to pioneer aviators at the end of the nineteenth century.


(Continues...)

Excerpted from Eureka by Gavin Weightman. Copyright © 2015 Gavin Weightman. Excerpted by permission of Yale UNIVERSITY PRESS.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Table of Contents

Contents

Introduction, vii,
1 The Bird Men, 1,
2 Seeing with Electricity, 54,
3 Written in the Sand, 109,
4 Homebrewed, 129,
5 Hard Cell, 186,
Afterword: The Nature of Invention, 241,
Bibliography, 247,
Acknowledgements, 252,
Index, 255,
Picture Credits, 265,

From the B&N Reads Blog

Customer Reviews