Engineering Quantum Mechanics / Edition 1

Engineering Quantum Mechanics / Edition 1

ISBN-10:
0470107634
ISBN-13:
9780470107638
Pub. Date:
08/23/2011
Publisher:
Wiley
ISBN-10:
0470107634
ISBN-13:
9780470107638
Pub. Date:
08/23/2011
Publisher:
Wiley
Engineering Quantum Mechanics / Edition 1

Engineering Quantum Mechanics / Edition 1

$162.95
Current price is , Original price is $162.95. You
$162.95 
  • SHIP THIS ITEM
    Ships in 1-2 days
  • PICK UP IN STORE

    Your local store may have stock of this item.


Overview

There has been growing interest in the model of semiconductor lasers with non-Markovian relaxation. Introducing senior and graduate students and research scientists to quantum mechanics concepts, which are becoming an essential tool in modern engineering, Engineering Quantum Mechanics develops a non-Markovian model for the optical gain of semiconductor, taking into account the rigorous electronic band-structure and the non-Markovian relaxation using the quantum statistical reduced-density operator formalism. Example programs based on Fortran 77 are provided for band-structures of zinc-blende and wurtzite quantum wells.

Product Details

ISBN-13: 9780470107638
Publisher: Wiley
Publication date: 08/23/2011
Series: IEEE Press
Pages: 314
Product dimensions: 6.30(w) x 9.30(h) x 0.90(d)

About the Author

DOYEOL AHN, PHD, is WB Distinguished Professor of Quantum Electronics in the Department of Electrical and Computer Engineering at the University of Seoul (Korea). A Fellow of the American Physical Society and an IEEE Fellow, he has coauthored more than 190 refereed journal papers and three book chapters, and holds seven U.S. patents to date.

SEOUNG-HWAN PARK, PHD, is Professor in the Department of Electronics Engineering at the Catholic University of Daegu (Korea). He has written two book chapters and coauthored more than 160 refereed journal and conference papers.

Read an Excerpt

Click to read or download

Table of Contents

Preface vii

Part I Fundamentals 1

1 Basic Quantum Mechanics 3

1.1 Measurements and Probability 3

1.2 Dirac Formulation 4

1.3 Brief Detour to Classical Mechanics 8

1.4 A Road to Quantum Mechanics 14

1.5 The Uncertainty Principle 21

1.6 The Harmonic Oscillator 22

1.7 Angular Momentum Eigenstates 29

1.8 Quantization of Electromagnetic Fields 35

1.9 Perturbation Theory 38

Problems 41

References 43

2 Basic Quantum Statistical Mechanics 45

2.1 Elementary Statistical Mechanics 45

2.2 Second Quantization 51

2.3 Density Operators 54

2.4 The Coherent State 58

2.5 The Squeezed State 62

2.6 Coherent Interactions Between Atoms and Fields 68

2.7 The Jaynes-Cummings Model 69

Problems 71

References 72

3 Elementary Theory of Electronic Band Structure in Semiconductors 73

3.1 Bloch Theorem and Effective Mass Theory 73

3.2 The Luttinger-Kohn Hamiltonian 84

3.3 The Zinc Blende Hamiltonian 105

3.4 The Wurtzite Hamiltonian 114

3.5 Band Structure of Zinc Blende and Wurtzite Semiconductors 123

3.6 Crystal Orientation Effects on a Zinc Blende Hamiltonian 135

3.7 Crystal Orientation Effects on a Wurtzite Hamiltonian 152

Problems 168

References 169

Part II Modern Applications 171

4 Quantum Information Science 173

4.1 Quantum Bits and Tensor Products 173

4.2 Quantum Entanglement 175

4.3 Quantum Teleportation 178

4.4 Evolution of the Quantum State: Quantum Information Processing 180

4.5 A Measure of Information 183

4.6 Quantum Black Holes 184

Appendix A Derivation of Equation (4.82) 202

Appendix B Derivation of Equations (4.93) and (4.106) 203

Problems 204

References 205

5 Modern Semiconductor Laser Theory 207

5.1 Density Operator Description of Optical Interactions 209

5.2 The Time-Convolutionless Equation 211

5.3 The Theory of Non-Markovian Optical Gain in Semiconductor Lasers 223

5.4 Optical Gain of a Quantum Well Laser with Non-Markovian Relaxation and Many-Body Effects 232

5.5 Numerical Methods for Valence Band Structure in Nanostructures 235

5.6 Zinc Blende Bulk and Quantum Well Structures 252

5.7 Wurtzite Bulk and Quantum Well Structures 258

5.8 Quantum Wires and Quantum Dots 265

Appendix: Fortran 77 Code for the Band Structure 274

Problems 286

References 287

Index 289

What People are Saying About This

From the Publisher

“The present book is intended for advanced undergraduate and graduate students in electrical engineering, physics, and material science. It also provides the necessary theoretical back-ground for researchers in optoelectronics or semiconductor devices.” (Zentralblatt MATH, 2012)

"Ahn (quantum electronics, U. of Seoul) and Park (electronic engineering, Catholic U. of Daegu, Korea) present a textbook for graduate and advanced undergraduate students in electrical engineering, physics, and materials science and engineering on quantum mechanics as it is increasingly being used in these fields. It also provides the necessary theoretical background for researchers in optoelectronics or semiconductor devices." (Book News, 1 October 2011)

From the B&N Reads Blog

Customer Reviews