Electrical Engineering: A Pocket Reference

Electrical Engineering: A Pocket Reference

Electrical Engineering: A Pocket Reference

Electrical Engineering: A Pocket Reference

Paperback(Softcover reprint of the original 1st ed. 2003)

$169.99 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Related collections and offers


Overview

This is a superb source of quickly accessible information on the whole area of electrical engineering and electronics. It serves as a concise and quick reference, with self-contained chapters comprising all important expressions, formulas, rules and theorems, as well as many examples and applications.


Product Details

ISBN-13: 9783540439653
Publisher: Springer Berlin Heidelberg
Publication date: 08/13/2003
Edition description: Softcover reprint of the original 1st ed. 2003
Pages: 626
Product dimensions: 5.08(w) x 7.80(h) x 0.06(d)

About the Author

Ralf Kories is a professor at Hochschule für Telemmunikation. He holds an M.S. in technology management from the Technical University Deft, The Netherlands and a Ph.D. in biological physics from the University of Mainz, Germany.

Heinz Schmidt-Walter is a professor in the department of electrical engineering at Hochschule Darmstadt. He holds an M.S. in electrical engineering and a Ph.D. in power electronics and electrical drives, both from the University of Hannover, Germany.

Table of Contents

1 DC Systems.- 1.1 Basic Quantities, Basic Laws.- 1.1.1 Electric Charge.- 1.1.2 Electric Current.- 1.1.3 Voltage and Potential.- 1.1.4 Ohm’s Law.- 1.1.5 Resistance and Conductance.- 1.1.6 Temperature Dependence of Resistance.- 1.1.7 Inductance.- 1.1.8 Capacitance.- 1.1.9 Ideal Voltage Source.- 1.1.10 Ideal Current Source.- 1.1.11 Kirchhoff’s Law.- 1.1.11.1 Kirchhoff’s First Law (Current Law).- 1.1.11.2 Kirchhoff’s Second Law (Voltage Law).- 1.1.12 Power and Energy.- 1.1.12.1 Energy and Power in a Resistor.- 1.1.12.2 Energy in an Inductor.- 1.1.12.3 Energy in a Capacitor.- 1.1.13 Efficiency.- 1.1.14 Maximum Power Transfer.- 1.2 Basic Circuits.- 1.2.1 Real Voltage and Current Sources.- 1.2.1.1 Real Voltage Source.- 1.2.1.2 Real Current Source.- 1.2.1.3 Voltage-Current Source Conversion.- 1.2.2 Circuit Elements in Series and Parallel.- 1.2.2.1 Series Combination of Resistors.- 1.2.2.2 Parallel Combination of Resistors.- 1.2.2.3 Series Combination of Conductances.- 1.2.2.4 Parallel Combination of Conductances.- 1.2.2.5 Series Combination of Inductances.- 1.2.2.6 Parallel Combination of Inductances.- 1.2.2.7 Series Combination of Capacitances.- 1.2.2.8 Parallel Combination of Capacitances.- 1.2.3 Star-Delta Transformation.- 1.2.4 Voltage and Current Divider.- 1.2.4.1 Voltage Divider.- 1.2.4.2 Current Divider.- 1.2.4.3 Capacitive and Inductive Dividers.- 1.2.5 RC and RL Combinations.- 1.2.5.1 Series Combination of R and C Driven by a Voltage Source.- 1.2.5.2 Series Combination of R and C Driven by a Current Source.- 1.2.5.3 Parallel Combination of R and C Driven by a Current Source.- 1.2.5.4 Parallel Combination of R and C Driven by a Voltage Source.- 1.2.5.5 Series Combination of R and L Driven by a Voltage Source.- 1.2.5.6 Series Combination of R and L Driven by a Current Source.- 1.2.5.7 Parallel Combination of R and L Driven by a Voltage Source.- 1.2.5.8 Parallel Combination of R and L Driven by a Current Source.- 1.2.6 RLC Combinations.- 1.2.6.1 Series Combination of R, L and C.- 1.3 Calculation Methods for Linear Circuits.- 1.3.1 Rules for Signs.- 1.3.2 Circuit Calculation with Mesh and Node Analysis.- 1.3.3 Superposition.- 1.3.4 Mesh Analysis.- 1.3.5 Node Analysis.- 1.3.6 Thévenin’s and Norton’s Theorem.- 1.3.6.1 Calculating a Load Current by Thévenin’s Theorem.- 1.3.6.2 Calculating a Current Within a Network.- 1.4 Notation Index.- 1.5 Further Reading.- 2 Electric Fields.- 2.1 Electrostatic Fields.- 2.1.1 Coulomb’s Law.- 2.1.2 Definition of Electric Field Strength.- 2.1.3 Voltage and Potential.- 2.1.4 Electrostatic Induction.- 2.1.5 Electric Displacement.- 2.1.6 Dielectrics.- 2.1.7 The Coulomb Integral.- 2.1.8 Gauss’s Law of Electrostatics.- 2.1.9 Capacitance.- 2.1.10 Electrostatic Field at a Boundary.- 2.1.11 Overview: Fields and Capacitances of Different Geometric Configurations.- 2.1.12 Energy in an Electrostatic Field.- 2.1.13 Forces in an Electrostatic Field.- 2.1.13.1 Force on a Charge.- 2.1.13.2 Force at the Boundary.- 2.1.14 Overview: Characteristics of an Electrostatic Field.- 2.1.15 Relationship between the Electrostatic Field Quantities.- 2.2 Static Steady-State Current Flow.- 2.2.1 Voltage and Potential.- 2.2.2 Current.- 2.2.3 Electric Field Strength.- 2.2.4 Current Density.- 2.2.5 Resistivity and Conductivity.- 2.2.6 Resistance and Conductance.- 2.2.7 Kirchhoff’s Laws.- 2.2.7.1 Kirchhoff’s First Law (Current Law).- 2.2.7.2 Kirchhoff’s Second Law (Mesh Law).- 2.2.8 Static Steady-State Current Flow at Boundaries.- 2.2.9 Overview: Fields and Resistances of Different Geometric Configurations.- 2.2.10 Power and Energy in Static Steady-State Current Flow.- 2.2.11 Overview: Characteristics of Static Steady-State Current Flow.- 2.2.12 Relationship Between Quantities in Static Steady-StateCurrent Flow.- 2.3 Magnetic Fields.- 2.3.1 Force on a Moving Charge.- 2.3.2 Definition of Magnetic Flux Density.- 2.3.3 Biot-Savart’s Law.- 2.3.4 Magnetic Field Strength.- 2.3.5 Magnetic Flux.- 2.3.6 Magnetic Voltage and Ampere’s Law.- 2.3.7 Magnetic Resistance, Magnetic Conductance, Inductance.- 2.3.8 Materials in a Magnetic Field.- 2.3.8.1 Ferromagnetic Materials.- 2.3.9 Magnetic Fields at Boundaries.- 2.3.10 The Magnetic Circuit.- 2.3.11 Magnetic Circuit with a Permanent Magnet.- 2.3.12 Overview: Inductances of Different Geometric Configurations.- 2.3.13 Induction.- 2.3.13.1 Induction in a Moving Electrical Conductor.- 2.3.13.2 Faraday’s Law of Induction.- 2.3.13.3 Self-Induction.- 2.3.14 Mutual Induction.- 2.3.15 Transformer Principle.- 2.3.16 Energy in a Magnetic Field.- 2.3.16.1 Energy in a Magnetic Circuit with an Air Gap.- 2.3.17 Forces in a Magnetic Field.- 2.3.17.1 Force on a Current-Carrying Conductor.- 2.3.17.2 Force at the Boundaries.- 2.3.18 Overview: Characteristics of a Magnetic Field.- 2.3.19 Relationship between the Magnetic Field Quantities.- 2.4 Maxwell’s Equations.- 2.5 Notation Index.- 2.6 Further Reading.- 3 AC Systems.- 3.1 Mathematical Basics of AC.- 3.1.1 Sine and Cosine Functions.- 3.1.1.1 Addition of SinusoidalWaveforms.- 3.1.2 Complex Numbers.- 3.1.2.1 Complex Arithmetic.- 3.1.2.2 Representation of Complex Numbers.- 3.1.2.3 Changing Between Different Representations.- 3.1.3 Complex Calculus.- 3.1.3.1 Complex Addition and Subtraction.- 3.1.3.2 Multiplication of Complex Numbers.- 3.1.4 Overview: Complex Number Arithmetic.- 3.1.5 The Complex Exponential Function.- 3.1.5.1 Exponential Function with Imaginary Exponents.- 3.1.5.2 Exponential Function with Complex Exponents.- 3.1.6 Trigonometric Functions with Complex Arguments.- 3.1.7 From Sinusoidal Waveforms to Phasors.- 3.1.7.1 Complex Magnitude.- 3.1.7.2 Relationship Between SinusoidalWaveforms and Phasors.- 3.1.7.3 Addition and Subtraction of Phasors.- 3.2 Sinusoidal Waveforms.- 3.2.1 Characteristics of SinusoidalWaveforms.- 3.2.2 Characteristics of Nonsinusoidal Waveforms.- 3.3 Complex Impedance and Admittance.- 3.3.1 Impedance.- 3.3.2 Complex Impedance of Passive Components.- 3.3.2.1 Resistor.- 3.3.2.2 Inductor.- 3.3.2.3 Capacitor.- 3.3.3 Admittance.- 3.3.4 Complex Admittance of Passive Components.- 3.3.5 Overview: Complex Impedance.- 3.4 Impedance of Passive Components.- 3.5 Combinations of Passive Components.- 3.5.1 Series Combinations.- 3.5.1.1 General Case.- 3.5.1.2 Resistor and Inductor in Series.- 3.5.1.3 Resistor and Capacitor in Series.- 3.5.1.4 Resistor, Inductor and Capacitor in Series.- 3.5.2 Parallel Combinations.- 3.5.2.1 General Case.- 3.5.2.2 Resistor and Inductor in Parallel.- 3.5.2.3 Resistor and Capacitor in Parallel.- 3.5.2.4 Resistor, Inductor and Capacitor in Parallel.- 3.5.3 Overview of Series and Parallel Circuits.- 3.6 Network Transformations.- 3.6.1 Transformation from Parallel to Series Circuits and Vice Versa.- 3.6.2 Sta-Delta (Wye-Delta) and Delta-Star (Delta-Wye) Transformations.- 3.6.3 Circuit Duality.- 3.7 Simple Networks.- 3.7.1 Complex Voltage and Current Division.- 3.7.2 Loaded Complex Voltage Divider.- 3.7.3 Impedance Matching.- 3.7.4 Voltage Divider with Defined Input and Output Resistances.- 3.7.5 Phase-Shifting Circuits.- 3.7.5.1 RC Phase Shifter.- 3.7.5.2 Alternative Phase-Shifting Circuits.- 3.7.6 AC Bridges.- 3.7.6.1 Balancing Condition.- 3.7.6.2 Application: Measurement Technique.- 3.8 Power in AC Circuits.- 3.8.1 Instantaneous Power.- 3.8.1.1 Power in a Resistance.- 3.8.1.2 Power in a Reactive Element.- 3.8.2 Average Power.- 3.8.2.1 Real Power.- 3.8.2.2 Reactive Power.- 3.8.2.3 Apparent Power.- 3.8.3 Complex Power.- 3.8.4 Overview: AC Power.- 3.8.5 Reactive Current Compensation.- 3.9 Three-Phase Supplies.- 3.9.1 Polyphase Systems.- 3.9.2 Three-Phase Systems.- 3.9.2.1 Properties of the Complex Operator a.- 3.9.3 Delta-Connected Generators.- 3.9.4 Star-Connected Generators.- 3.10 Overview: Symmetrical Three-Phase Systems.- 3.10.1 Power in a Three-Phase System.- 3.11 Notation Index.- 3.12 Further Reading.- 4 Current, Voltage and Power Measurement.- 4.1 Electrical Measuring Instruments.- 4.1.1 Moving-Coil Instrument.- 4.1.2 Ratiometer Moving-Coil Instrument.- 4.1.3 Electrodynamic Instrument.- 4.1.4 Moving-Iron Instrument.- 4.1.5 Other Instruments.- 4.1.6 Overview: Electrical Instruments.- 4.2 Measurement of DC Current and Voltage.- 4.2.1 Moving-Coil Instrument.- 4.2.2 Range Extension for Current Measurements.- 4.2.3 Range Extension for Voltage Measurements.- 4.2.4 Overload Protection.- 4.2.5 Systematic Measurement Errors in Current and Voltage Measurement.- 4.3 Measurement of AC Voltage and AC Current.- 4.3.1 Moving-Coil Instrument with Rectifier.- 4.3.2 Moving-Iron Instruments.- 4.3.3 Measurement Range Extension Using an Instrument Transformer.- 4.3.4 RMS Measurement.- 4.4 Power Measurement.- 4.4.1 Power Measurement in a DC Circuit.- 4.4.2 Power Measurement in an AC Circuit.- 4.4.2.1 Three-Voltmeter Method.- 4.4.2.2 Power Factor Measurement.- 4.4.3 Power Measurement in a Multiphase System.- 4.4.3.1 Measurement of the Real Power in a Multiphase System.- 4.4.3.2 Measurement of the Reactive Power in a Multiphase System.- 4.5 Measurement Errors.- 4.5.1 Systematic and Random Errors.- 4.5.2 Guaranteed Error Limits.- 4.6 Overview: Symbols on Measurement Instruments.- 4.7 Overview: Measurement Methods.- 4.8 Notation Index.- 4.9 Further Reading.- 5 Networks at Variable Frequency.- 5.1 Linear Systems.- 5.1.1 Transfer Function, Amplitude and Phase Response.- 5.2 Filters.- 5.2.1 Low-Pass Filter.- 5.2.2 High-Pass Filter.- 5.2.3 Bandpass Filter.- 5.2.4 Stop-Band Filter.- 5.2.5 All-Pass Filter.- 5.3 Simple Filters.- 5.3.1 Low-Pass Filter.- 5.3.1.1 Rise Time.- 5.3.2 Frequency Normalisation.- 5.3.2.1 Approximation of the Magnitude Response.- 5.3.3 High-Pass Filter.- 5.3.3.1 Approximation of the Magnitude Response.- 5.3.4 Higher-Order Filters.- 5.3.5 Bandpass Filter.- 5.3.6 Filter Realisation.- 5.4 Notation Index.- 5.5 Further Reading.- 6 Signals and Systems.- 6.1 Signals.- 6.1.1 Definitions.- 6.1.2 Symmetry Properties of Signals.- 6.2 Fourier Series.- 6.2.1 Trigonometric Form.- 6.2.1.1 Symmetry Properties.- 6.2.2 Amplitude-Phase Form.- 6.2.3 Exponential Form.- 6.2.3.1 Symmetry Properties.- 6.2.4 Overview: Fourier Series Representations.- 6.2.5 Useful Integrals for the Calculation of Fourier Coefficients.- 6.2.6 Useful Fourier Series.- 6.2.7 Application of the Fourier Series.- 6.2.7.1 Spectrum of a Rectangular Signal.- 6.2.7.2 Spectrum of a Sawtooth Signal.- 6.2.7.3 Spectrum of a Composite Signal.- 6.3 Systems.- 6.3.1 System Properties.- 6.3.1.1 Linear Systems.- 6.3.1.2 Causal Systems.- 6.3.1.3 Time-Invariant Systems.- 6.3.1.4 Stable Systems.- 6.3.1.5 LTI Systems.- 6.3.2 Elementary Signals.- 6.3.2.1 The Step Function.- 6.3.2.2 The Rectangular Pulse.- 6.3.2.3 The Triangular Pulse.- 6.3.2.4 The Gaussian Pulse.- 6.3.2.5 The Impulse Function (Delta Function).- 6.3.3 Shifting and Scaling of Time Signals.- 6.3.4 System Responses.- 6.3.4.1 Impulse Response.- 6.3.4.2 Step Response.- 6.3.4.3 System Response to Arbitrary Input Signals.- 6.3.4.4 Rules of Convolution.- 6.3.4.5 Transfer Function.- 6.3.4.6 System Response Calculation in the Frequency Domain.- 6.3.5 Impulse and Step Response Calculation.- 6.3.5.1 Normalisation of Circuits.- 6.3.5.2 Impulse and Step Response of First-Order Systems.- 6.3.5.3 Impulse and Step Response of Second-Order Systems.- 6.3.6 Ideal Systems.- 6.3.6.1 Distortion-Free Systems.- 6.3.6.2 Ideal Low-Pass Filter.- 6.3.6.3 Ideal Bandpass Filter.- 6.4 Fourier Transforms.- 6.4.1 Principle.- 6.4.2 Definition.- 6.4.3 Representation of the Fourier Transform.- 6.4.3.1 Symmetry Properties.- 6.4.4 Overview: Properties of the Fourier Transform.- 6.4.5 Fourier Transforms of Elementary Signals.- 6.4.5.1 Spectrum of the Delta Function.- 6.4.5.2 Spectrum of the Signum and the Step Functions.- 6.4.5.3 Spectrum of the Rectangular Pulse.- 6.4.5.4 Spectrum of the Triangular Pulse.- 6.4.5.5 Spectrum of the Gaussian Pulse.- 6.4.5.6 Spectrum of Harmonic Functions.- 6.4.6 Summary of Fourier Transforms.- 6.5 Nonlinear Systems.- 6.5.1 Definition.- 6.5.2 Characterisation of Nonlinear Systems.- 6.5.2.1 Characteristic Equation.- 6.5.2.2 Total Harmonic Distortion.- 6.5.2.3 Signal-to-Intermodulation Ratio.- 6.6 Notation Index.- 6.7 Further Reading.- 7 Analogue Circuit Design.- 7.1 Methods of Analysis.- 7.1.1 Linearisation at the Operating Point.- 7.1.2 AC Equivalent Circuit.- 7.1.3 Input and Output Impedance.- 7.1.3.1 Determination of the Input Impedance.- 7.1.3.2 Determination of the Output Impedance.- 7.1.3.3 Combination of Two-Terminal Networks.- 7.1.4 Two-Port Networks.- 7.1.4.1 Two-Port Network Equations.- 7.1.4.2 Hybrid Parameters (h-Parameters).- 7.1.4.3 Admittance Parameters (y-Parameters).- 7.1.5 Block Diagrams.- 7.1.5.1 Calculation Rules for Block Diagrams.- 7.1.6 Bode Plot.- 7.2 Silicon and Germanium Diodes.- 7.2.1 Current-Voltage Characteristic of Si and Ge Diodes.- 7.2.2 Temperature Dependency of the Threshold Voltage.- 7.2.3 Dynamic Resistance (Differential Resistance).- 7.3 Small-Signal Amplifier with Bipolar Transistors.- 7.3.1 Transistor Characteristics.- 7.3.1.1 Symbols, Voltages and Currents for Bipolar Transistors.- 7.3.1.2 Output Characteristics.- 7.3.1.3 Transfer Characteristic.- 7.3.1.4 Input Characteristic.- 7.3.1.5 Static Current Gain—DC.- 7.3.1.6 Differential Current Gain—.- 7.3.1.7 Transconductance gm.- 7.3.1.8 Thermal Voltage Drift.- 7.3.1.9 Differential Input Resistance rBE.- 7.3.1.10 Differential Output Resistance rinCE.- 7.3.1.11 Reverse Voltage-Transfer Ratio Ar.- 7.3.1.12 Unity Gain and Critical Frequencies.- 7.3.2 Equivalent Circuits.- 7.3.2.1 Static Equivalent Circuit.- 7.3.2.2 AC Equivalent Circuit.- 7.3.2.3 The Giacoletto Equivalent Circuit.- 7.3.3 Darlington Pair.- 7.3.3.1 Pseudo-Darlington Pair.- 7.3.4 Basic Circuits with Bipolar Transistors.- 7.3.5 Common-Emitter Circuit.- 7.3.5.1 Common-Emitter Circuit Two-Port Network Equations.- 7.3.5.2 Common-Emitter AC Equivalent Circuit.- 7.3.5.3 Common-Emitter Circuit Input Impedance.- 7.3.5.4 Common-Emitter Circuit Output Impedance.- 7.3.5.5 Common-Emitter Circuit AC Voltage Gain.- 7.3.5.6 Operating Point Biasing.- 7.3.5.7 Operating Point Stabilisation.- 7.3.5.8 Load Line.- 7.3.5.9 Common-Emitter Circuit at High Frequencies.- 7.3.6 Common-Collector Circuit (Emitter Follower).- 7.3.6.1 Common-Collector AC Equivalent Circuit.- 7.3.6.2 Common-Collector Circuit Input Impedance.- 7.3.6.3 Common-Collector Circuit Output Impedance.- 7.3.6.4 Common-Collector Circuit AC Current Gain.- 7.3.6.5 Common-Collector Circuit at High Frequencies.- 7.3.7 Common-Base Circuit.- 7.3.7.1 Common-Base AC Equivalent Circuit.- 7.3.7.2 Common-Base Circuit Input Impedance.- 7.3.7.3 Common-Base Circuit Output Impedance.- 7.3.7.4 Common-Base Circuit AC Voltage Gain.- 7.3.7.5 Common-Base Circuit at High Frequencies.- 7.3.8 Overview: Basic Bipolar Transistor Circuits.- 7.3.9 Bipolar Transistor Current Sources.- 7.3.10 Bipolar Transistor Differential Amplifier.- 7.3.10.1 Differential Mode Gain.- 7.3.10.2 Common-Mode Gain.- 7.3.10.3 Common-Mode Rejection Ratio.- 7.3.10.4 Differential Amplifier Input Impedance.- 7.3.10.5 Differential Amplifier Output Impedance.- 7.3.10.6 Offset Voltage of the Differential Amplifier.- 7.3.10.7 Differential Amplifier Offset Current.- 7.3.10.8 Input Offset Voltage Drift.- 7.3.10.9 Differential Amplifier Examples.- 7.3.11 Overview: Bipolar Transistor Differential Amplifiers.- 7.3.12 Current Mirror.- 7.3.12.1 Current Mirror Variations.- 7.4 Field-Effect Transistor Small-Signal Amplifiers.- 7.4.1 Transistor Characteristics and Ratings.- 7.4.1.1 Symbols, Voltages and Currents for Field-Effect Transistors.- 7.4.1.2 JFET Characteristic Curves.- 7.4.1.3 IGFET Characteristic Curves.- 7.4.1.4 Transconductance.- 7.4.1.5 Dynamic Output Resistance.- 7.4.1.6 Input Impedance.- 7.4.2 Equivalent Circuit.- 7.4.2.1 Equivalent Circuit for Low Frequencies.- 7.4.2.2 Equivalent Circuit for High Frequencies.- 7.4.2.3 Critical Frequency of Transconductance.- 7.4.3 Basic Circuits using Field-Effect Transistors.- 7.4.4 Common-Source Circuit.- 7.4.4.1 Common-Source Two-Port Parameters.- 7.4.4.2 AC Equivalent Circuit of the Common-Source Circuit.- 7.4.4.3 Input Impedance of the Common-Source Circuit.- 7.4.4.4 Output Impedance of the Common-Source Circuit.- 7.4.4.5 AC Voltage Gain.- 7.4.4.6 Operating-Point Biasing.- 7.4.4.7 Common-Drain Circuit, Source Follower.- 7.4.4.8 AC Equivalent Circuit of the common-drain Circuit.- 7.4.4.9 Input Impedance of the Common-Drain Circuit.- 7.4.4.10 Output Impedance of the Common-Drain Circuit.- 7.4.4.11 Voltage Gain of the Common-Drain Circuit.- 7.4.4.12 Common-Drain Circuit at High Frequencies.- 7.4.5 Common-Gate Circuit.- 7.4.5.1 Input Impedance of the Common-Gate Circuit.- 7.4.5.2 Output Impedance of the Common-Gate Circuit.- 7.4.5.3 Voltage Gain of the Common-Gate Circuit.- 7.4.6 Overview: Basic Circuits using Field-Effect Transistors.- 7.4.7 FET Current Source.- 7.4.8 Differential Amplifier with Field-Effect Transistors.- 7.4.8.1 Differential Mode Gain.- 7.4.8.2 Common-Mode Gain.- 7.4.8.3 Common-Mode Rejection Ratio.- 7.4.8.4 Input Impedance.- 7.4.8.5 Output Impedance.- 7.4.9 Overview: Differential Amplifier with FETs.- 7.4.10 Controllable Resistor FETs.- 7.5 Negative Feedback.- 7.5.1 Feedback Topologies.- 7.5.2 Influence of Negative Feedback on the Input and Output Impedance.- 7.5.2.1 Input and Output Impedance of the Four Kinds of Feedback.- 7.5.3 Influence of Negative Feedback on Frequency Response.- 7.5.4 Stability of Systems with Negative Feedback.- 7.6 Operational Amplifiers.- 7.6.1 Characteristics of the Operational Amplifier.- 7.6.1.1 Output Voltage Swing.- 7.6.1.2 Offset Voltage.- 7.6.1.3 Offset Voltage Drift.- 7.6.1.4 Common-Mode Input Swing.- 7.6.1.5 Differential Mode Gain.- 7.6.1.6 Common-Mode Gain.- 7.6.1.7 Common-Mode Rejection Ratio.- 7.6.1.8 Power Supply Rejection Ratio.- 7.6.1.9 Input Impedance.- 7.6.1.10 Output Impedance.- 7.6.1.11 Input Bias Current.- 7.6.1.12 Gain-Bandwidth Product (Unity Gain Frequency).- 7.6.1.13 Critical Frequency.- 7.6.1.14 Slew Rate of the Output Voltage.- 7.6.1.15 Equivalent Circuit of the Operational Amplifier.- 7.6.2 Frequency Compensation.- 7.6.3 Comparators.- 7.6.4 Circuits with Operational Amplifiers.- 7.6.4.1 Impedance Converter (follower).- 7.6.4.2 Noninverting Amplifier.- 7.6.4.3 Inverting Amplifier.- 7.6.4.4 Summing Amplifier.- 7.6.4.5 Difference Amplifier.- 7.6.4.6 Instrumentation Amplifier.- 7.6.4.7 Voltage-Controlled Current Source.- 7.6.4.8 Integrator.- 7.6.4.9 Differentiator.- 7.6.4.10 AC Voltage Amplifier with Single-Rail Supply.- 7.6.4.11 Voltage Setting with Defined Slew Rate.- 7.6.4.12 Schmitt Trigger.- 7.6.4.13 Triangle- and Square-Wave Generator.- 7.6.4.14 Multivibrator.- 7.6.4.15 Sawtooth Generator.- 7.6.4.16 Pulse-Width Modulator.- 7.7 Active Filters.- 7.7.1 Low-Pass Filters.- 7.7.1.1 Theory of Low-Pass Filters.- 7.7.1.2 Low-Pass Filter Calculations.- 7.7.1.3 Low-Pass Filter Circuits.- 7.7.2 High-Pass Filters.- 7.7.2.1 Theory of High-Pass Filters.- 7.7.2.2 High-Pass Filter Circuits.- 7.7.3 Bandpass Filters.- 7.7.3.1 Second-Order Bandpass Filter.- 7.7.3.2 Second-Order Bandpass Filter Circuit.- 7.7.3.3 Fourth- and Higher-Order Bandpass Filters.- 7.7.4 Universal Filter.- 7.7.5 Switched-Capacitor Filter.- 7.8 Oscillators.- 7.8.1 RC Oscillators.- 7.8.1.1 Phase-Shift Oscillator.- 7.8.1.2 Wien Bridge Oscillator.- 7.8.2 LC Tuned Oscillators.- 7.8.2.1 Meissner Oscillator.- 7.8.2.2 Hartley Oscillator.- 7.8.2.3 Colpitts Oscillator.- 7.8.3 Quartz/Crystal Oscillators.- 7.8.3.1 Pierce Oscillator.- 7.8.3.2 Quartz Oscillator with TTL Gates.- 7.8.4 Multivibrators.- 7.9 Heating and Cooling.- 7.9.1 Reliability and Lifetime.- 7.9.2 Temperature Calculation.- 7.9.2.1 Thermal Resistance.- 7.9.2.2 Thermal Capacity.- 7.9.2.3 Transient Thermal Impedance.- 7.10 Power Amplifiers.- 7.10.1 Emitter Follower.- 7.10.2 Complementary Emitter Follower in Class B Operation.- 7.10.3 Complementary Emitter Follower in Class C Operation.- 7.10.4 The Characteristic Curves of the Operation Classes.- 7.10.5 Complementary Emitter Follower in Class AB Operation.- 7.10.5.1 Biasing for Class AB Operation.- 7.10.5.2 Complementary Emitter Follower with Darlington Transistors.- 7.10.5.3 Current-Limiting Complementary Emitter Follower.- 7.10.6 Input Signal Injection to Power Amplifiers.- 7.10.6.1 Input Signal Injection using a Differential Amplifier.- 7.10.6.2 Input Signal Injection Using an Op-Amp.- 7.10.7 Switched-Mode Amplifiers.- 7.11 Notation Index.- 7.12 Further Reading.- 8 Digital Electronics.- 8.1 Logic Algebra.- 8.1.1 Logic Variables and Logic Gates.- 8.1.1.1 Inversion.- 8.1.1.2 And Function.- 8.1.1.3 Or Function.- 8.1.2 Logic Functions and their Symbols.- 8.1.2.1 Inverter (Not).- 8.1.2.2 And Gate.- 8.1.2.3 Or Gate.- 8.1.2.4 Nand Gate.- 8.1.2.5 Nor Gate.- 8.1.2.6 Xor Gate, Exclusive Or.- 8.1.3 Logic Transformations.- 8.1.3.1 Commutative Laws.- 8.1.3.2 Associative Laws.- 8.1.3.3 Distributive Laws.- 8.1.3.4 Inversion Laws (DeMorgan’s Rules).- 8.1.4 Overview: Logic Transformations.- 8.1.5 Analysis of Logic Circuits.- 8.1.6 Sum of Products and Product of Sums.- 8.1.6.1 Sum of Products.- 8.1.6.2 Product of Sums.- 8.1.7 Systematic Reduction of a Logic Function.- 8.1.7.1 Karnaugh Map.- 8.1.7.2 The Quine-McCluskey Technique.- 8.1.8 Synthesis of Combinational Circuits.- 8.1.8.1 Implementation Using only Nand Gates.- 8.1.8.2 Implementation Using only Nor Gates.- 8.2 Electronic Realisation of Logic Circuits.- 8.2.1 Electrical Specification.- 8.2.1.1 Voltage Levels.- 8.2.1.2 Transfer Characteristic.- 8.2.1.3 Loading.- 8.2.1.4 Noise Margin.- 8.2.1.5 Propagation Delay Time.- 8.2.1.6 Rise Times.- 8.2.1.7 Power Loss.- 8.2.1.8 Minimum Slew Rate.- 8.2.1.9 Integration.- 8.2.2 Overview: Notation in Data Sheets.- 8.2.3 TTL Family.- 8.2.3.1 TTL Devices.- 8.2.3.2 Basic TTL Gate Circuit.- 8.2.4 CMOS Family.- 8.2.5 Comparison of TTL and CMOS.- 8.2.5.1 Other Logic Families.- 8.2.6 Special Circuit Variations.- 8.2.6.1 Outputs with Open Collector.- 8.2.6.2 Wired And/Or.- 8.2.6.3 Tri-State Outputs.- 8.2.6.4 Schmitt Trigger Inputs.- 8.3 Combinational Circuits and Sequential Logic.- 8.3.1 Dependency Notation.- 8.3.1.1 Overview: Dependency Notation.- 8.3.2 Circuit Symbols for Combinational and Sequential Logic.- 8.4 Examples of Combinational Circuits.- 8.4.1 1-to-n Decoder.- 8.4.2 Multiplexer and Demultiplexer.- 8.4.2.1 Overview of Circuits.- 8.5 Latches and Flip-Flops.- 8.5.1 Flip-Flop Applications.- 8.5.2 SR Flip-Flop.- 8.5.2.1 SR Flip-Flop with Clock Input.- 8.5.3 D Flip-Flop.- 8.5.4 Master-Slave Flip-Flop.- 8.5.5 JK Flip-Flop.- 8.5.6 Flip-Flop Triggering.- 8.5.7 Notation for Flip-Flop Circuit Symbols.- 8.5.8 Overview: Flip-Flops.- 8.5.9 Overview: Edge-Triggered Flip-Flops.- 8.5.10 Synthesis of Edge-Triggered Flip-Flops.- 8.5.11 Overview: Flip-Flop Circuits.- 8.6 Memory.- 8.6.1 Memory Construction.- 8.6.2 Memory Access.- 8.6.3 Static and Dynamic RAMs.- 8.6.3.1 Variations of RAM.- 8.6.4 Read-Only Memory.- 8.6.5 Programmable Logic Devices.- 8.6.5.1 Principle of Operation.- 8.6.5.2 PLD Types.- 8.6.5.3 Output Circuits.- 8.7 Registers and Shift Registers.- 8.8 Counters.- 8.8.1 Asynchronous Counters.- 8.8.1.1 Binary Counter.- 8.8.1.2 Decimal Counter.- 8.8.1.3 Down Counter.- 8.8.1.4 Up/Down Counter.- 8.8.1.5 Programmable Counter.- 8.8.2 Synchronous Counters.- 8.8.2.1 Cascading Synchronous Counters.- 8.8.3 Overview: TTL and CMOS Counters.- 8.8.3.1 TTL Counters.- 8.8.3.2 CMOS Counters.- 8.9 Design and Synthesis of Sequential Logic.- 8.10 Further Reading.- 9 Power Supplies.- 9.1 Power Transformers.- 9.2 Rectification and Filtering.- 9.2.1 Different Rectifier Circuits.- 9.3 Analogue Voltage Stabilisation.- 9.3.1 Voltage Stabilisation with Zener Diode.- 9.3.2 Analogue Stabilisation with Transistor.- 9.3.3 Voltage Regulation.- 9.3.3.1 Integrated Voltage Regulators.- 9.4 Switched Mode Power Supplies.- 9.4.1 Single-Ended Converters, Secondary Switched SMPS.- 9.4.1.1 Buck Converter.- 9.4.1.2 Boost Converter.- 9.4.1.3 Buck-Boost Converter.- 9.4.2 Primary Switched SMPS.- 9.4.2.1 Flyback Converter.- 9.4.2.2 Single-Transistor Forward Converter.- 9.4.2.3 Push-Pull Converters.- 9.4.2.4 Resonant Converters.- 9.4.3 Overview: Switched-Mode Power Supplies.- 9.4.4 Control of Switched-Mode Power Supplies.- 9.4.4.1 Voltage-Mode Control.- 9.4.4.2 Current-Mode Control.- 9.4.4.3 Comparison: Voltage-Mode vs. Current-Mode Control.- 9.4.4.4 Design of the PI Controller.- 9.4.5 Design of Inductors and High-Frequency Transformers.- 9.4.5.1 Calculation of Inductors.- 9.4.5.2 Calculation of High-Frequency Transformers.- 9.4.6 Power Factor Control.- 9.4.6.1 Currents, Voltages and Power of the PFC.- 9.4.6.2 Controlling the PFC.- 9.4.7 Radio-Frequency Interference Suppression of Switched-Mode Power Supplies.- 9.4.7.1 Radio-Frequency Interference Radiation.- 9.4.7.2 Mains Input Conducted-Mode Interference.- 9.4.7.3 Suppression of Common-Mode Radio-Frequency Interference.- 9.4.7.4 Suppression of Differential-Mode Radio Frequency Interference.- 9.4.7.5 Complete Radio-Frequency Interference Filter.- 9.5 Notation Index.- 9.6 Further Reading.- A Mathematical Basics.- A.1 Trigonometric Functions.- A.1.1 Properties.- A.1.2 Sums and Differences of Trigonometric Functions.- A.1.3 Sums and Differences in the Argument.- A.1.4 Multiples of the Argument.- A.1.5 Weighted Sums of Trigonometric Functions.- A.1.6 Products of Trigonometric Functions.- A.1.7 Triple Products.- A.1.8 Powers of Trigonometric Functions.- A.1.9 Trigonometric Functions with Complex Arguments.- A.2 Inverse Trigonometric Functions (Arc Functions).- A.3 Hyperbolic Functions.- A.4 Differential Calculus.- A.4.1 Basics of Differential Calculus.- A.4.2 Derivatives of Elementary Functions.- A.5 Integral Calculus.- A.5.1 Basics of Integral Calculus.- A.5.1.1 Integrals of Elementary Functions.- A.5.2 Integrals Involving Trigonometric Functions.- A.5.3 Integrals Involving Exponential Functions.- A.5.4 Integrals Involving Inverse Trigonometric Functions.- A.5.5 Definite Integrals.- A.6 The Integral of the Standard Normal Distribution.- B Tables.- B.1 The International System of Units (SI).- B.1.1 Decimal Prefixes.- B.1.2 SI Units in Electrical Engineering.- B.2 Naturally Occurring Constants.- B.3 Symbols of the Greek Alphabet.- B.4 Units and Definitions of Technical-Physical Quantities.- B.5 Imperial and American Units.- B.6 Other Units.- B.7 Charge and Discharge Curves.- B.8 IEC Standard Series.- B.9 Resistor Colour Code.- B.10 Parallel Combination of Resistors.- B.11 Selecting Track Dimensions for Current Flow.- B.12 AmericanWire Gauge.- B.13 Dry Cell Batteries.- B.14 Notation of Radio-Frequency Ranges.- B.15 Ratios.- B.15.1 Absolute Voltage Levels.- B.15.1.1 Conversion of Power and Voltage Level Ratios.- B.15.2 Relative Levels.- B.16 V.24 Interface.- B.17 Dual-Tone Multi-Frequency.- B.18 ASCII Coding.- B.19 Resolution and Coding for Analogue-to-Digital Converters.- B.20 Chemical Elements.- B.21 Materials.- C Acronyms.- D Circuit Symbols.
From the B&N Reads Blog

Customer Reviews