Einstein: His Life and Universe
By the author of the acclaimed bestsellers Benjamin Franklin and Steve Jobs, this is the definitive biography of Albert Einstein.

How did his mind work? What made him a genius? Isaacson’s biography shows how his scientific imagination sprang from the rebellious nature of his personality. His fascinating story is a testament to the connection between creativity and freedom.

Based on newly released personal letters of Einstein, this book explores how an imaginative, impertinent patent clerk—a struggling father in a difficult marriage who couldn’t get a teaching job or a doctorate—became the mind reader of the creator of the cosmos, the locksmith of the mysteries of the atom, and the universe. His success came from questioning conventional wisdom and marveling at mysteries that struck others as mundane. This led him to embrace a morality and politics based on respect for free minds, free spirits, and free individuals.

These traits are just as vital for this new century of globalization, in which our success will depend on our creativity, as they were for the beginning of the last century, when Einstein helped usher in the modern age.
1102815298
Einstein: His Life and Universe
By the author of the acclaimed bestsellers Benjamin Franklin and Steve Jobs, this is the definitive biography of Albert Einstein.

How did his mind work? What made him a genius? Isaacson’s biography shows how his scientific imagination sprang from the rebellious nature of his personality. His fascinating story is a testament to the connection between creativity and freedom.

Based on newly released personal letters of Einstein, this book explores how an imaginative, impertinent patent clerk—a struggling father in a difficult marriage who couldn’t get a teaching job or a doctorate—became the mind reader of the creator of the cosmos, the locksmith of the mysteries of the atom, and the universe. His success came from questioning conventional wisdom and marveling at mysteries that struck others as mundane. This led him to embrace a morality and politics based on respect for free minds, free spirits, and free individuals.

These traits are just as vital for this new century of globalization, in which our success will depend on our creativity, as they were for the beginning of the last century, when Einstein helped usher in the modern age.
19.48 In Stock
Einstein: His Life and Universe

Einstein: His Life and Universe

by Walter Isaacson
Einstein: His Life and Universe

Einstein: His Life and Universe

by Walter Isaacson

Paperback

$19.48  $22.99 Save 15% Current price is $19.48, Original price is $22.99. You Save 15%.
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Related collections and offers


Overview

By the author of the acclaimed bestsellers Benjamin Franklin and Steve Jobs, this is the definitive biography of Albert Einstein.

How did his mind work? What made him a genius? Isaacson’s biography shows how his scientific imagination sprang from the rebellious nature of his personality. His fascinating story is a testament to the connection between creativity and freedom.

Based on newly released personal letters of Einstein, this book explores how an imaginative, impertinent patent clerk—a struggling father in a difficult marriage who couldn’t get a teaching job or a doctorate—became the mind reader of the creator of the cosmos, the locksmith of the mysteries of the atom, and the universe. His success came from questioning conventional wisdom and marveling at mysteries that struck others as mundane. This led him to embrace a morality and politics based on respect for free minds, free spirits, and free individuals.

These traits are just as vital for this new century of globalization, in which our success will depend on our creativity, as they were for the beginning of the last century, when Einstein helped usher in the modern age.

Product Details

ISBN-13: 9780743264747
Publisher: Simon & Schuster
Publication date: 05/13/2008
Pages: 704
Sales rank: 28,440
Product dimensions: 6.10(w) x 9.20(h) x 1.70(d)

About the Author

About The Author
Walter Isaacson is the bestselling author of biographies of Jennifer Doudna, Leonardo da Vinci, Steve Jobs, Benjamin Franklin, and Albert Einstein. He is a professor of history at Tulane and was CEO of the Aspen Institute, chair of CNN, and editor of Time. He was awarded the National Humanities Medal in 2023. Visit him at Isaacson.Tulane.edu.

Date of Birth:

May 20, 1952

Place of Birth:

New Orleans, LA

Education:

Harvard, B.A. in History and Literature, 1974; Oxford (Rhodes Scholar), M.A. in Philosophy, Politics, & Economics

Read an Excerpt

Einstein

His Life and Universe
By Walter Isaacson

Simon & Schuster

Copyright © 2007 Walter Isaacson
All right reserved.

ISBN: 9780743264730

Ôªø

CHAPTER ONE

THE LIGHT-BEAM RIDER

"I promise you four papers," the young patent examiner wrote his friend.

The letter would turn out to bear some of the most significant tidings

in the history of science, but its momentous nature was masked by an

impish tone that was typical of its author. He had, after all, just

addressed his friend as "you frozen whale" and apologized for writing a

letter that was "inconsequential babble." Only when he got around to

describing the papers, which he had produced during his spare time, did

he give some indication that he sensed their significance.

"The first deals with radiation and the energy properties of light and

is very revolutionary," he explained. Yes, it was indeed revolutionary.

It argued that light could be regarded not just as a wave but also as a

stream of tiny particles called quanta. The implications that would

eventually arise from this theory -- a cosmos without strict causality

or certainty -- would spook him for the rest of his life.

"The second paper is a determination of the true sizes of atoms." Even

though the very existence of atoms was still in dispute, this was the

most straightforward of the papers, which is why he chose it as the

safest bet forhis latest attempt at a doctoral thesis. He was in the

process of revolutionizing physics, but he had been repeatedly thwarted

in his efforts to win an academic job or even get a doctoral degree,

which he hoped might get him promoted from a third- to a second-class

examiner at the patent office.

The third paper explained the jittery motion of microscopic particles in

liquid by using a statistical analysis of random collisions. In the

process, it established that atoms and molecules actually exist.

"The fourth paper is only a rough draft at this point, and is an

electrodynamics of moving bodies which employs a modification of the

theory of space and time." Well, that was certainly more than

inconsequential babble. Based purely on thought experiments -- performed

in his head rather than in a lab -- he had decided to discard Newton's

concepts of absolute space and time. It would become known as the

Special Theory of Relativity.

What he did not tell his friend, because it had not yet occurred to him,

was that he would produce a fifth paper that year, a short addendum to

the fourth, which posited a relationship between energy and mass. Out of

it would arise the best-known equation in all of physics: E=mc2.

Looking back at a century that will be remembered for its willingness to

break classical bonds, and looking ahead to an era that seeks to nurture

the creativity needed for scientific innovation, one person stands out

as a paramount icon of our age: the kindly refugee from oppression whose

wild halo of hair, twinkling eyes, engaging humanity, and extraordinary

brilliance made his face a symbol and his name a synonym for genius.

Albert Einstein was a locksmith blessed with imagination and guided by a

faith in the harmony of nature's handiwork. His fascinating story, a

testament to the connection between creativity and freedom, reflects the

triumphs and tumults of the modern era.

Now that his archives have been completely opened, it is possible to

explore how the private side of Einstein -- his nonconformist

personality, his instincts as a rebel, his curiosity, his passions and

detachments -- intertwined with his political side and his scientific

side. Knowing about the man helps us understand the wellsprings of his

science, and vice versa. Character and imagination and creative genius

were all related, as if part of some unified field.

Despite his reputation for being aloof, he was in fact passionate in

both his personal and scientific pursuits. At college he fell madly in

love with the only woman in his physics class, a dark and intense

Serbian named Mileva Maric´. They had an illegitimate daughter, then

married and had two sons. She served as a sounding board for his

scientific ideas and helped to check the math in his papers, but

eventually their relationship disintegrated. Einstein offered her a

deal. He would win the Nobel Prize someday, he said; if she gave him a

divorce, he would give her the prize money. She thought for a week and

accepted. Because his theories were so radical, it was seventeen years

after his miraculous outpouring from the patent office before he was

awarded the prize and she collected.

Einstein's life and work reflected the disruption of societal

certainties and moral absolutes in the modernist atmosphere of the early

twentieth century. Imaginative nonconformity was in the air: Picasso,

Joyce, Freud, Stravinsky, Schoenberg, and others were breaking

conventional bonds. Charging this atmosphere was a conception of the

universe in which space and time and the properties of particles seemed

based on the vagaries of observations.

Einstein, however, was not truly a relativist, even though that is how

he was interpreted by many, including some whose disdain was tinged by

anti-Semitism. Beneath all of his theories, including relativity, was a

quest for invariants, certainties, and absolutes. There was a harmonious

reality underlying the laws of the universe, Einstein felt, and the goal

of science was to discover it.

His quest began in 1895, when as a 16-year-old he imagined what it would

be like to ride alongside a light beam. A decade later came his miracle

year, described in the letter above, which laid the foundations for the

two great advances of twentieth-century physics: relativity and quantum

theory.

A decade after that, in 1915, he wrested from nature his crowning glory,

one of the most beautiful theories in all of science, the general theory

of relativity. As with the special theory, his thinking had evolved

through thought experiments. Imagine being in an enclosed elevator

accelerating up through space, he conjectured in one of them. The

effects you'd feel would be indistinguishable from the experience of

gravity.

Gravity, he figured, was a warping of space and time, and he came up

with the equations that describe how the dynamics of this curvature

result from the interplay between matter, motion, and energy. It can be

described by using another thought experiment. Picture what it would be

like to roll a bowling ball onto the two-dimensional surface of a

trampoline. Then roll some billiard balls. They move toward the bowling

ball not because it exerts some mysterious attraction but because of the

way it curves the trampoline fabric. Now imagine this happening in the

four-dimensional fabric of space and time. Okay, it's not easy, but

that's why we're no Einstein and he was.

The exact midpoint of his career came a decade after that, in 1925, and

it was a turning point. The quantum revolution he had helped to launch

was being transformed into a new mechanics that was based on

uncertainties and probabilities. He made his last great contributions to

quantum mechanics that year but, simultaneously, began to resist it. He

would spend the next three decades, ending with some equations scribbled

while on his deathbed in 1955, stubbornly criticizing what he regarded

as the incompleteness of quantum mechanics while attempting to subsume

it into a unified field theory.

Both during his thirty years as a revolutionary and his subsequent

thirty years as a resister, Einstein remained consistent in his

willingness to be a serenely amused loner who was comfortable not

conforming. Independent in his thinking, he was driven by an imagination

that broke from the confines of conventional wisdom. He was that odd

breed, a reverential rebel, and he was guided by a faith, which he wore

lightly and with a twinkle in his eye, in a God who would not play dice

by allowing things to happen by chance.

Einstein's nonconformist streak was evident in his personality and

politics as well. Although he subscribed to socialist ideals, he was too

much of an individualist to be comfortable with excessive state control

or centralized authority. His impudent instincts, which served him so

well as a young scientist, made him allergic to nationalism, militarism,

and anything that smacked of a herd mentality. And until Hitler caused

him to revise his geopolitical equations, he was an instinctive pacifist

who celebrated resistance to war.

His tale encompasses the vast sweep of modern science, from the

infinitesimal to the infinite, from the emission of photons to the

expansion of the cosmos. A century after his great triumphs, we are

still living in Einstein's universe, one defined on the macro scale by

his theory of relativity and on the micro scale by a quantum mechanics

that has proven durable even as it remains disconcerting.

His fingerprints are all over today's technologies. Photoelectric cells

and lasers, nuclear power and fiber optics, space travel, and even

semiconductors all trace back to his theories. He signed the letter to

Franklin Roosevelt warning that it may be possible to build an atom

bomb, and the letters of his famed equation relating energy to mass

hover in our minds when we picture the resulting mushroom cloud.

Einstein's launch into fame, which occurred when measurements made

during a 1919 eclipse confirmed his prediction of how much gravity bends

light, coincided with, and contributed to, the birth of a new celebrity

age. He became a scientific supernova and humanist icon, one of the most

famous faces on the planet. The public earnestly puzzled over his

theories, elevated him into a cult of genius, and canonized him as a

secular saint.

If he did not have that electrified halo of hair and those piercing

eyes, would he still have become science's preeminent poster boy?

Suppose, as a thought experiment, that he had looked like a Max Planck

or a Niels Bohr. Would he have remained in their reputational orbit,

that of a mere scientific genius? Or would he still have made the leap

into the pantheon inhabited by Aristotle, Galileo, and Newton?

The latter, I believe, is the case. His work had a very personal

character, a stamp that made it recognizably his, the way a Picasso is

recognizably a Picasso. He made imaginative leaps and discerned great

principles through thought experiments rather than by methodical

inductions based on experimental data. The theories that resulted were

at times astonishing, mysterious, and counterintuitive, yet they

contained notions that could capture the popular imagination: the

relativity of space and time, E=mc2, the bending of light beams, and the

warping of space.

Adding to his aura was his simple humanity. His inner security was

tempered by the humility that comes from being awed by nature. He could

be detached and aloof from those close to him, but toward mankind in

general he exuded a true kindness and gentle compassion.

Yet for all of his popular appeal and surface accessibility, Einstein

also came to symbolize the perception that modern physics was something

that ordinary laymen could not comprehend, "the province of priest-like

experts," in the words of Harvard professor Dudley Herschbach. It was

not always thus. Galileo and Newton were both great geniuses, but their

mechanical cause-and-effect explanation of the world was something that

most thoughtful folks could grasp. In the eighteenth century of Benjamin

Franklin and the nineteenth century of Thomas Edison, an educated person

could feel some familiarity with science and even dabble in it as an

amateur.

A popular feel for scientific endeavors should, if possible, be restored

given the needs of the twenty-first century. This does not mean that

every literature major should take a watered-down physics course or that

a corporate lawyer should stay abreast of quantum mechanics. Rather, it

means that an appreciation for the methods of science is a useful asset

for a responsible citizenry. What science teaches us, very

significantly, is the correlation between factual evidence and general

theories, something well illustrated in Einstein's life.

In addition, an appreciation for the glories of science is a joyful

trait for a good society. It helps us remain in touch with that

childlike ca-pacity for wonder, about such ordinary things as falling

apples and elevators, that characterizes Einstein and other great

theoretical physicists.

That is why studying Einstein can be worthwhile. Science is inspiring

and noble, and its pursuit an enchanting mission, as the sagas of its

heroes remind us. Near the end of his life, Einstein was asked by the

New York State Education Department what schools should emphasize. "In

teaching history," he replied, "there should be extensive discussion of

personalities who benefited mankind through independence of character

and judgment." Einstein fits into that category.

At a time when there is a new emphasis, in the face of global

competition, on science and math education, we should also note the

other part of Einstein's answer. "Critical comments by students should

be taken in a friendly spirit," he said. "Accumulation of material

should not stifle the student's independence." A society's competitive

advantage will come not from how well its schools teach the

multiplication and periodic tables, but from how well they stimulate

imagination and creativity.

Therein lies the key, I think, to Einstein's brilliance and the lessons

of his life. As a young student he never did well with rote learning.

And later, as a theorist, his success came not from the brute strength

of his mental processing power but from his imagination and creativity.

He could construct complex equations, but more important, he knew that

math is the language nature uses to describe her wonders. So he could

visualize how equations were reflected in realities -- how the

electromagnetic field equations discovered by James Clerk Maxwell, for

example, would manifest themselves to a boy riding alongside a light

beam. As he once declared, "Imagination is more important than

knowledge."

That approach required him to embrace nonconformity. "Long live

impudence!" he exulted to the lover who would later become his wife. "It

is my guardian angel in this world." Many years later, when others

thought that his reluctance to embrace quantum mechanics showed that he

had lost his edge, he lamented, "To punish me for my contempt for

authority, fate made me an authority myself."

His success came from questioning conventional wisdom, challenging

authority, and marveling at mysteries that struck others as mundane.

This led him to embrace a morality and politics based on respect for

free minds, free spirits, and free individuals. Tyranny repulsed him,

and he saw tolerance not simply as a sweet virtue but as a necessary

condition for a creative society. "It is important to foster

individuality," he said, "for only the individual can produce the new

ideas."

This outlook made Einstein a rebel with a reverence for the harmony of

nature, one who had just the right blend of imagination and wisdom to

transform our understanding of the universe. These traits are just as

vital for this new century of globalization, in which our success will

depend on our creativity, as they were for the beginning of the

twentieth century, when Einstein helped usher in the modern age.

Copyright © 2007 by Walter Isaacson

CHAPTER TWO

CHILDHOOD

1879-1896

The Swabian

He was slow in learning how to talk. "My parents were so worried," he

later recalled, "that they consulted a doctor." Even after he had begun

using words, sometime after the age of 2, he developed a quirk that

prompted the family maid to dub him "der Depperte," the dopey one, and

others in his family to label him as "almost backwards." Whenever he had

something to say, he would try it out on himself, whispering it softly

until it sounded good enough to pronounce aloud. "Every sentence he

uttered," his worshipful younger sister recalled, "no matter how

routine, he repeated to himself softly, moving his lips." It was all

very worrying, she said. "He had such difficulty with language that

those around him feared he would never learn."

His slow development was combined with a cheeky rebelliousness toward

authority, which led one schoolmaster to send him packing and another to

amuse history by declaring that he would never amount to much. These

traits made Albert Einstein the patron saint of distracted school kids

everywhere. But they also helped to make him, or so he later surmised,

the most creative scientific genius of modern times.

His cocky contempt for authority led him to question received wisdom in

ways that well-trained acolytes in the academy never contemplated. And

as for his slow verbal development, he came to believe that it allowed

him to observe with wonder the everyday phenomena that others took for

granted. "When I ask myself how it happened that I in particular

discovered the relativity theory, it seemed to lie in the following

circumstance," Einstein once explained. "The ordinary adult never

bothers his head about the problems of space and time. These are things

he has thought of as a child. But I developed so slowly that I began to

wonder about space and time only when I was already grown up.

Consequently, I probed more deeply into the problem than an ordinary

child would have."

Einstein's developmental problems have probably been exaggerated,

perhaps even by himself, for we have some letters from his adoring

grandparents saying that he was just as clever and endearing as every

grandchild is. But throughout his life, Einstein had a mild form of

echolalia, causing him to repeat phrases to himself, two or three times,

especially if they amused him. And he generally preferred to think in

pictures, most notably in famous thought experiments, such as imagining

watching lightning strikes from a moving train or experiencing gravity

while inside a falling elevator. "I very rarely think in words at all,"

he later told a psychologist. "A thought comes, and I may try to express

it in words afterwards."

Einstein was descended, on both parents' sides, from Jewish tradesmen

and peddlers who had, for at least two centuries, made modest livings in

the rural villages of Swabia in southwestern Germany. With each

generation they had become, or at least so they thought, increasingly

assimilated into the German culture that they loved. Although Jewish by

cultural designation and kindred instinct, they displayed scant interest

in the religion or its rituals.

Einstein regularly dismissed the role that his heritage played in

shaping who he became. "Exploration of my ancestors," he told a friend

late in life, "leads nowhere." That's not fully true. He was blessed by

being born into an independent-minded and intelligent family line that

valued education, and his life was certainly affected, in ways both

beautiful and tragic, by membership in a religious heritage that had a

distinctive intellectual tradition and a history of being both outsiders

and wanderers. Of course, the fact that he happened to be Jewish in

Germany in the early twentieth century made him more of an outsider, and

more of a wanderer, than he would have preferred -- but that, too,

became integral to who he was and the role he would play in world

history.

Einstein's father, Hermann, was born in 1847 in the Swabian village of

Buchau, whose thriving Jewish community was just beginning to enjoy the

right to practice any vocation. Hermann showed "a marked inclination for

mathematics," and his family was able to send him seventy-five miles

north to Stuttgart for high school. But they could not afford to send

him to a university, most of which were closed to Jews in any event, so

he returned home to Buchau to go into trade.

A few years later, as part of the general migration of rural German Jews

into industrial centers during the late nineteenth century, Hermann and

his parents moved thirty-five miles away to the more prosperous town of

Ulm, which prophetically boasted as its motto "Ulmenses sunt

mathematici," the people of Ulm are mathematicians.

There he became a partner in a cousin's featherbed company. He was

"exceedingly friendly, mild and wise," his son would recall. With a

gentleness that blurred into docility, Hermann was to prove inept as a

businessman and forever impractical in financial matters. But his

docility did make him well suited to be a genial family man and good

husband to a strong-willed woman. At age 29, he married Pauline Koch,

eleven years his junior.

Pauline's father, Julius Koch, had built a considerable fortune as a

grain dealer and purveyor to the royal Württemberg court. Pauline

inherited his practicality, but she leavened his dour disposition with a

teasing wit edged with sarcasm and a laugh that could be both infectious

and wounding (traits she would pass on to her son). From all accounts,

the match between Hermann and Pauline was a happy one, with her strong

personality meshing "in complete harmony" with her husband's passivity.

Their first child was born at 11:30 a.m. on Friday, March 14, 1879, in

Ulm, which had recently joined, along with the rest of Swabia, the new

German Reich. Initially, Pauline and Hermann had planned to name the boy

Abraham, after his paternal grandfather. But they came to feel, he later

said, that the name sounded "too Jewish." So they kept the initial A and

named him Albert Einstein.

Munich

In 1880, just a year after Albert's birth, Hermann's featherbed business

foundered and he was persuaded to move to Munich by his brother Jakob,

who had opened a gas and electrical supply company there. Jakob, the

youngest of five siblings, had been able to get a higher education,

unlike Hermann, and he had qualified as an engineer. As they competed

for contracts to provide generators and electrical lighting to

municipalities in southern Germany, Jakob was in charge of the technical

side while Hermann provided a modicum of salesmanship skills plus,

perhaps more important, loans from his wife's side of the family.

Pauline and Hermann had a second and final child, a daughter, in

November 1881, who was named Maria but throughout her life used instead

the diminutive Maja. When Albert was shown his new sister for the first

time, he was led to believe that she was like a wonderful toy that he

would enjoy. His response was to look at her and exclaim, "Yes, but

where are the wheels?" It may not have been the most perceptive of

questions, but it did show that during his third year his language

challenges did not prevent him from making some memorable comments.

Despite a few childhood squabbles, Maja was to become her brother's most

intimate soul mate.

The Einsteins settled into a comfortable home with mature trees and an

elegant garden in a Munich suburb for what was to be, at least through

most of Albert's childhood, a respectable bourgeois existence. Munich

had been architecturally burnished by mad King Ludwig II (1845-1886) and

boasted a profusion of churches, art galleries, and concert halls that

favored the works of resident Richard Wagner. In 1882, just after the

Einsteins arrived, the city had about 300,000 residents, 85 percent of

them Catholics and 2 percent of them Jewish, and it was the host of the

first German electricity exhibition, at which electric lights were

introduced to the city streets.

Einstein's back garden was often bustling with cousins and children. But

he shied from their boisterous games and instead "occupied himself with

quieter things." One governess nicknamed him "Father Bore." He was

generally a loner, a tendency he claimed to cherish throughout his life,

although his was a special sort of detachment that was interwoven with a

relish for camaraderie and intellectual companionship. "From the very

beginning he was inclined to separate himself from children his own age

and to engage in daydreaming and meditative musing," according to

Philipp Frank, a longtime scientific colleague.

He liked to work on puzzles, erect complex structures with his toy

building set, play with a steam engine that his uncle gave him, and

build houses of cards. According to Maja, Einstein was able to construct

card structures as high as fourteen stories. Even discounting the

recollections of a star-struck younger sister, there was probably a lot

of truth to her claim that "persistence and tenacity were obviously

already part of his character."

He was also, at least as a young child, prone to temper tantrums. "At

such moments his face would turn completely yellow, the tip of his nose

snow-white, and he was no longer in control of himself," Maja remembers.

Once, at age 5, he grabbed a chair and threw it at a tutor, who fled and

never returned. Maja's head became the target of various hard objects.

"It takes a sound skull," she later joked, "to be the sister of an

intellectual." Unlike his persistence and tenacity, he eventually

outgrew his temper.

To use the language of psychologists, the young Einstein's ability to

systemize (identify the laws that govern a system) was far greater than

his ability to empathize (sense and care about what other humans are

feeling), which have led some to ask if he might have exhibited mild

symptoms of some developmental disorder. However, it is important to

note that, despite his aloof and occasionally rebellious manner, he did

have the ability to make close friends and to empathize both with

colleagues and humanity in general.

The great awakenings that happen in childhood are usually lost to

memory. But for Einstein, an experience occurred when he was 4 or 5 that

would alter his life and be etched forever in his mind -- and in the

history of science. He was sick in bed one day, and his father brought

him a compass. He later recalled being so excited as he examined its

mysterious powers that he trembled and grew cold. The fact that the

magnetic needle behaved as if influenced by some hidden force field,

rather than through the more familiar mechanical method involving touch

or contact, produced a sense of wonder that motivated him throughout his

life. "I can still remember -- or at least I believe I can remember --

that this experience made a deep and lasting impression on me," he wrote

on one of the many occasions he recounted the incident. "Something

deeply hidden had to be behind things."

"It's an iconic story," Dennis Overbye noted in Einstein in Love,

"the young boy trembling to the invisible order behind chaotic reality."

It has been told in the movie IQ, in which Einstein, played by

Walter Matthau, wears the compass around his neck, and it is the focus

of a children's book, Rescuing Albert's Compass, by Shulamith

Oppenheim, whose father-in-law heard the tale from Einstein in 1911.

After being mesmerized by the compass needle's fealty to an unseen

field, Einstein would develop a lifelong devotion to field theories as a

way to describe nature. Field theories use mathematical quantities, such

as numbers or vectors or tensors, to describe how the conditions at any

point in space will affect matter or another field. For example, in a

gravitational or an electromagnetic field there are forces that could

act on a particle at any point, and the equations of a field theory

describe how these change as one moves through the region. The first

paragraph of his great 1905 paper on special relativity begins with a

consideration of the effects of electrical and magnetic fields; his

theory of general relativity is based on equations that describe a

gravitational field; and at the very end of his life he was doggedly

scribbling further field equations in the hope that they would form the

basis for a theory of everything. As the science historian Gerald Holton

has noted, Einstein regarded "the classical concept of the field the

greatest contribution to the scientific spirit."

His mother, an accomplished pianist, also gave him a gift at around the

same time, one that likewise would last throughout his life. She

arranged for him to take violin lessons. At first he chafed at the

mechanical discipline of the instruction. But after being exposed to

Mozart's sonatas, music became both magical and emotional to him. "I

believe that love is a better teacher than a sense of duty," he said,

"at least for me."

Soon he was playing Mozart duets, with his mother accompanying him on

the piano. "Mozart's music is so pure and beautiful that I see it as a

reflection of the inner beauty of the universe itself," he later told a

friend. "Of course," he added in a remark that reflected his view of

math and physics as well as of Mozart, "like all great beauty, his music

was pure simplicity."

Music was no mere diversion. On the contrary, it helped him think.

"Whenever he felt that he had come to the end of the road or faced a

difficult challenge in his work," said his son Hans Albert, "he would

take refuge in music and that would solve all his difficulties." The

violin thus proved useful during the years he lived alone in Berlin,

wrestling with general relativity. "He would often play his violin in

his kitchen late at night, improvising melodies while he pondered

complicated problems," a friend recalled. "Then, suddenly, in the middle

of playing, he would announce excitedly, 'I've got it!' As if by

inspiration, the answer to the problem would have come to him in the

midst of music."

His appreciation for music, and especially for Mozart, may have

reflected his feel for the harmony of the universe. As Alexander

Moszkowski, who wrote a biography of Einstein in 1920 based on

conversations with him, noted, "Music, Nature, and God became

intermingled in him in a complex of feeling, a moral unity, the trace of

which never vanished."

Throughout his life, Albert Einstein would retain the intuition and the

awe of a child. He never lost his sense of wonder at the magic of

nature's phenomena -- magnetic fields, gravity, inertia, acceleration,

light beams -- which grown-ups find so commonplace. He retained the

ability to hold two thoughts in his mind simultaneously, to be puzzled

when they conflicted, and to marvel when he could smell an underlying

unity. "People like you and me never grow old," he wrote a friend later

in life. "We never cease to stand like curious children before the great

mystery into which we were born."

School

In his later years, Einstein would tell an old joke about an agnostic

uncle, who was the only member of his family who went to synagogue. When

asked why he did so, the uncle would respond, "Ah, but you never know."

Einstein's parents, on the other hand, were "entirely irreligious" and

felt no compulsion to hedge their bets. They did not keep kosher or

attend synagogue, and his father referred to Jewish rituals as "ancient

superstitions."

Consequently, when Albert turned 6 and had to go to school, his parents

did not care that there was no Jewish one near their home. Instead he

went to the large Catholic school in their neighborhood, the

Petersschule. As the only Jew among the seventy students in his class,

Einstein took the standard course in Catholic religion and ended up

enjoying it immensely. Indeed, he did so well in his Catholic studies

that he helped his classmates with theirs.

One day his teacher brought a large nail to the class. "The nails with

which Jesus was nailed to the cross looked like this," he said.

Nevertheless, Einstein later said that he felt no discrimination from

the teachers. "The teachers were liberal and made no distinction based

on denominations," he wrote. His fellow students, however, were a

different matter. "Among the children at the elementary school,

anti-Semitism was prevalent," he recalled.

Being taunted on his walks to and from school based on "racial

characteristics about which the children were strangely aware" helped

reinforce the sense of being an outsider, which would stay with him his

entire life. "Physical attacks and insults on the way home from school

were frequent, but for the most part not too vicious. Nevertheless, they

were sufficient to consolidate, even in a child, a lively sense of being

an outsider."

When he turned 9, Einstein moved up to a high school near the center of

Munich, the Luitpold Gymnasium, which was known as an enlightened

institution that emphasized math and science as well as Latin and Greek.

In addition, the school supplied a teacher to provide religious

instruction for him and other Jews.

Despite his parents' secularism, or perhaps because of it, Einstein

rather suddenly developed a passionate zeal for Judaism. "He was so

fervent in his feelings that, on his own, he observed Jewish religious

strictures in every detail," his sister recalled. He ate no pork, kept

kosher dietary laws, and obeyed the strictures of the Sabbath, all

rather difficult to do when the rest of his family had a lack of

interest bordering on disdain for such displays. He even composed his

own hymns for the glorification of God, which he sang to himself as he

walked home from school.

One widely held belief about Einstein is that he failed math as a

student, an assertion that is made, often accompanied by the phrase "as

everyone knows," by scores of books and thousands of websites designed

to reassure underachieving students. It even made it into the famous

"Ripley's Believe It or Not!" newspaper column.

Alas, Einstein's childhood offers history many savory ironies, but this

is not one of them. In 1935, a rabbi in Princeton showed him a clipping

of the Ripley's column with the headline "Greatest Living Mathematician

Failed in Mathematics." Einstein laughed. "I never failed in

mathematics," he replied, correctly. "Before I was fifteen I had

mastered differential and integral calculus."

In fact, he was a wonderful student, at least intellectually. In primary

school, he was at the top of his class. "Yesterday Albert got his

grades," his mother reported to an aunt when he was 7. "Once again he

was ranked first." At the gymnasium, he disliked the mechanical learning

of languages such as Latin and Greek, a problem exacerbated by what he

later said was his "bad memory for words and texts." But even in these

courses, Einstein consistently got top grades. Years later, when

Einstein celebrated his fiftieth birthday and there were stories about

how poorly the great genius had fared at the gymnasium, the school's

current principal made a point of publishing a letter revealing how good

his grades actually were.

As for math, far from being a failure, he was "far above the school

requirements." By age 12, his sister recalled, "he already had a

predilection for solving complicated problems in applied arithmetic,"

and he decided to see if he could jump ahead by learning geometry and

algebra on his own. His parents bought him the textbooks in advance so

that he could master them over summer vacation. Not only did he learn

the proofs in the books, he tackled the new theories by trying to prove

them on his own. "Play and playmates were forgotten," she noted. "For

days on end he sat alone, immersed in the search for a solution, not

giving up before he had found it."

His uncle Jakob Einstein, the engineer, introduced him to the joys of

algebra. "It's a merry science," he explained. "When the animal that we

are hunting cannot be caught, we call it X temporarily and

continue to hunt until it is bagged." He went on to give the boy even

more difficult challenges, Maja recalled, "with good-natured doubts

about his ability to solve them." When Einstein triumphed, as he

invariably did, he "was overcome with great happiness and was already

then aware of the direction in which his talents were leading him."

Among the concepts that Uncle Jakob threw at him was the Pythagorean

theorem (the square of the lengths of the legs of a right triangle add

up to the square of the length of the hypotenuse). "After much effort I

succeeded in 'proving' this theorem on the basis of the similarity of

triangles," Einstein recalled. Once again he was thinking in pictures.

"It seemed to me 'evident' that the relations of the sides of the

right-angled triangles would have to be completely determined by one of

the acute angles."

Maja, with the pride of a younger sister, called Einstein's Pythagorean

proof "an entirely original new one." Although perhaps new to him, it is

hard to imagine that Einstein's approach, which was surely similar to

the standard ones based on the proportionality of the sides of similar

triangles, was completely original. Nevertheless, it did show Einstein's

youthful appreciation that elegant theorems can be derived from simple

axioms -- and the fact that he was in little danger of failing math. "As

a boy of 12, I was thrilled to see that it was possible to find out

truth by reasoning alone, without the help of any outside experience,"

he told a reporter from a high school newspaper in Princeton years

later. "I became more and more convinced that nature could be understood

as a relatively simple mathematical structure."

Einstein's greatest intellectual stimulation came from a poor medical

student who used to dine with his family once a week. It was an old

Jewish custom to take in a needy religious scholar to share the Sabbath

meal; the Einsteins modified the tradition by hosting instead a medical

student on Thursdays. His name was Max Talmud (later changed to Talmey,

when he immigrated to the United States), and he began his weekly visits

when he was 21 and Einstein was 10. "He was a pretty, dark-haired boy,"

remembered Talmud. "In all those years, I never saw him reading any

light literature. Nor did I ever see him in the company of schoolmates

or other boys his age."

Talmud brought him science books, including a popular illustrated series

called People's Books on Natural Science, "a work which I read

with breathless attention," said Einstein. The twenty-one little volumes

were written by Aaron Bernstein, who stressed the interrelations between

biology and physics, and he reported in great detail the scientific

experiments being done at the time, especially in Germany.

In the opening section of the first volume, Bernstein dealt with the

speed of light, a topic that obviously fascinated him. Indeed, he

returned to it repeatedly in his subsequent volumes, including eleven

essays on the topic in volume 8. Judging from the thought experiments

that Einstein later used in creating his theory of relativity,

Bernstein's books appear to have been influential.

For example, Bernstein asked readers to imagine being on a speeding

train. If a bullet is shot through the window, it would seem that it was

shot at an angle, because the train would have moved between the time

the bullet entered one window and exited the window on the other side.

Likewise, because of the speed of the earth through space, the same must

be true of light going through a telescope. What was amazing, said

Bernstein, was that experiments showed the same effect no matter how

fast the source of the light was moving. In a sentence that, because of

its relation to what Einstein would later famously conclude, seems to

have made an impression, Bernstein declared, "Since each kind of light

proves to be of exactly the same speed, the law of the speed of light

can well be called the most general of all of nature's laws."

In another volume, Bernstein took his young readers on an imaginary trip

through space. The mode of transport was the wave of an electric signal.

His books celebrated the joyful wonders of scientific investigation and

included such exuberant passages as this one written about the

successful prediction of the location of the new planet Uranus: "Praised

be this science! Praised be the men who do it! And praised be the human

mind, which sees more sharply than does the human eye."

Bernstein was, as Einstein would later be, eager to tie together all of

nature's forces. For example, after discussing how all electromagnetic

phenomena, such as light, could be considered waves, he speculated that

the same may be true for gravity. A unity and simplicity, Bernstein

wrote, lay beneath all the concepts applied by our perceptions. Truth in

science consisted in discovering theories that described this underlying

reality. Einstein later recalled the revelation, and the realist

attitude, that this instilled in him as a young boy: "Out yonder there

was this huge world, which exists independently of us human beings and

which stands before us like a great, eternal riddle."

Years later, when they met in New York during Einstein's first visit

there, Talmud asked what he thought, in retrospect, of Bernstein's work.

"A very good book," he said. "It has exerted a great influence on my

whole development."

Talmud also helped Einstein continue to explore the wonders of

mathematics by giving him a textbook on geometry two years before he was

scheduled to learn that subject in school. Later, Einstein would refer

to it as "the sacred little geometry book" and speak of it with awe:

"Here were assertions, as for example the intersection of the three

altitudes of a triangle in one point, which -- though by no means

evident -- could nevertheless be proved with such certainty that any

doubt appeared to be out of the question. This lucidity and certainty

made an indescribable impression upon me." Years later, in a lecture at

Oxford, Einstein noted, "If Euclid failed to kindle your youthful

enthusiasm, then you were not born to be a scientific thinker."

When Talmud arrived each Thursday, Einstein delighted in showing him the

problems he had solved that week. Initially, Talmud was able to help

him, but he was soon surpassed by his pupil. "After a short time, a few

months, he had worked through the whole book," Talmud recalled. "He

thereupon devoted himself to higher mathematics...Soon the flight of his

mathematical genius was so high that I could no longer follow."

So the awed medical student moved on to introducing Einstein to

philosophy. "I recommended Kant to him," he recalled. "At that time he

was still a child, only thirteen years old, yet Kant's works,

incomprehensible to ordinary mortals, seemed to be clear to him." Kant

became, for a while, Einstein's favorite philosopher, and his

Critique of Pure Reason eventually led him to delve also into

David Hume, Ernst Mach, and the issue of what can be known about

reality.

Einstein's exposure to science produced a sudden reaction against

religion at age 12, just as he would have been readying for a bar

mitzvah. Bernstein, in his popular science volumes, had reconciled

science with religious inclination. As he put it, "The religious

inclination lies in the dim consciousness that dwells in humans that all

nature, including the humans in it, is in no way an accidental game, but

a work of lawfulness, that there is a fundamental cause of all

existence."

Einstein would later come close to these sentiments. But at the time,

his leap away from faith was a radical one. "Through the reading of

popular scientific books, I soon reached the conviction that much in the

stories of the Bible could not be true. The consequence was a positively

fanatic orgy of f reethinking coupled with the impression that youth is

intentionally being deceived by the state through lies; it was a

crushing impression."

As a result, Einstein avoided religious rituals for the rest of his

life. "There arose in Einstein an aversion to the orthodox practice of

the Jewish or any traditional religion, as well as to attendance at

religious services, and this he has never lost," his friend Philipp

Frank later noted. He did, however, retain from his childhood religious

phase a profound reverence for the harmony and beauty of what he called

the mind of God as it was expressed in the creation of the universe and

its laws.

Einstein's rebellion against religious dogma had a profound effect on

his general outlook toward received wisdom. It inculcated an allergic

reaction against all forms of dogma and authority, which was to affect

both his politics and his science. "Suspicion against every kind of

authority grew out of this experience, an attitude which has never again

left me," he later said. Indeed, it was this comfort with being a

nonconformist that would define both his science and his social thinking

for the rest of his life.

He would later be able to pull off this contrariness with a grace that

was generally endearing, once he was accepted as a genius. But it did

not play so well when he was merely a sassy student at a Munich

gymnasium. "He was very uncomfortable in school," according to his

sister. He found the style of teaching -- rote drills, impatience with

questioning -- to be repugnant. "The military tone of the school, the

systematic training in the worship of authority that was supposed to

accustom pupils at an early age to military discipline, was particularly

unpleasant."

Even in Munich, where the Bavarian spirit engendered a less regimented

approach to life, this Prussian glorification of the military had taken

hold, and many of the children loved to play at being soldiers. When

troops would come by, accompanied by fifes and drums, kids would pour

into the streets to join the parade and march in lockstep. But not

Einstein. Watching such a display once, he began to cry. "When I grow

up, I don't want to be one of those poor people," he told his parents.

As Einstein later explained, "When a person can take pleasure in

marching in step to a piece of music it is enough to make me despise

him. He has been given his big brain only by mistake."

The opposition he felt to all types of regimentation made his education

at the Munich gymnasium increasingly irksome and contentious. The

mechanical learning there, he complained, "seemed very much akin to the

methods of the Prussian army, where a mechanical discipline was achieved

by repeated execution of meaningless orders." In later years, he would

liken his teachers to members of the military. "The teachers at the

elementary school seemed to me like drill sergeants," he said, "and the

teachers at the gymnasium like lieutenants."

He once asked C. P. Snow, the British writer and scientist, whether he

was familiar with the German word Zwang. Snow allowed that he

was; it meant constraint, compulsion, obligation, coercion. Why? In his

Munich school, Einstein answered, he had made his first strike against

Zwang, and it had helped define him ever since.

Skepticism and a resistance to received wisdom became a hallmark of his

life. As he proclaimed in a letter to a fatherly friend in 1901, "A

foolish faith in authority is the worst enemy of truth."

Throughout the six decades of his scientific career, whether leading the

quantum revolution or later resisting it, this attitude helped shape

Einstein's work. "His early suspicion of authority, which never wholly

left him, was to prove of decisive importance," said Banesh Hoffmann,

who was a collaborator of Einstein's in his later years. "Without it he

would not have been able to develop the powerful independence of mind

that gave him the courage to challenge established scientific beliefs

and thereby revolutionize physics."

This contempt for authority did not endear him to the German

"lieutenants" who taught him at his school. As a result, one of his

teachers proclaimed that his insolence made him unwelcome in class. When

Einstein insisted that he had committed no offense, the teacher replied,

"Yes, that is true, but you sit there in the back row and smile, and

your mere presence here spoils the respect of the class for me."

Einstein's discomfort spiraled toward depression, perhaps even close to

a nervous breakdown, when his father's business suffered a sudden

reversal of fortune. The collapse was a precipitous one. During most of

Einstein's school years, the Einstein brothers' company had been a

success. In 1885, it had two hundred employees and provided the first

electrical lights for Munich's Oktoberfest. Over the next few years, it

won the contract to wire the community of Schwabing, a Munich suburb of

ten thousand people, using gas motors to drive twin dynanamos that the

Einsteins had designed. Jakob Einstein received six patents for

improvements in arc lamps, automatic circuit breakers, and electric

meters. The company was poised to rival Siemens and other power

companies then flourishing. To raise capital, the brothers mortgaged

their homes, borrowed more than 60,000 marks at 10 percent interest, and

went deeply in debt.

But in 1894, when Einstein was 15, the company went bust after it lost

competitions to light the central part of Munich and other locations. His

parents and sister, along with Uncle Jakob, moved to northern Italy --

first Milan and then the nearby town of Pavia -- where the company's

Italian partners thought there would be more fertile territory for a smaller

firm. Their elegant home was torn down by a developer to build an apartment

block. Einstein was left behind in Munich, at the house of a distant

relative, to finish his final three years of school.

It is not quite clear whether Einstein, in that sad autumn of 1894, was

actually forced to leave the Luitpold Gymnasium or was merely politely

encouraged to leave. Years later, he recalled that the teacher who had

declared that his "presence spoils the respect of the class for me" had

gone on to "express the wish that I leave the school." An early book by a

member of his family said that it was his own decision. "Albert increasingly

resolved not to remain in Munich, and he worked out a plan."

That plan involved getting a letter from the family doctor, Max Talmud's

older brother, who certified that he was suffering from nervous exhaustion.

He used this to justify leaving the school at Christmas vacation in 1894

and not returning. Instead, he took a train across the Alps to Italy and

informed his "alarmed" parents that he was never going back to Germany.

Instead, he promised, he would study on his own and attempt to gain

admission to a technical college in Zurich the following autumn.

There was perhaps one other factor in his decision to leave Germany. Had he

remained there until he was 17, just over a year away, he would have been

required to join the army, a prospect that his sister said "he contemplated

with dread." So, in addition to announcing that he would not go back to

Munich, he would soon ask for his father's help in renouncing his German

citizenship.

Aarau

Einstein spent the spring and summer of 1895 living with his parents in

their Pavia apartment and helping at the family firm. In the process, he

was able to get a good feel for the workings of magnets, coils, and

generated electricity. Einstein's work impressed his family. On one

occasion, Uncle Jakob was having problems with some calculations for a

new machine, so Einstein went to work on it. "After my assistant engineer

and I had been racking our brain for days, that young sprig had got the

whole thing in just fifteen minutes," Jakob reported to a friend. "You

will hear of him yet."

With his love of the sublime solitude found in the mountains, Einstein

hiked for days in the Alps and Apennines, including an excursion from Pavia

to Genoa to see his mother's brother Julius Koch. Wherever he traveled in

northern Italy, he was delighted by the non-Germanic grace and "delicacy"

of the people. Their "naturalness" was a contrast to the "spiritually

broken and mechanically obedient automatons" of Germany, his sister

recalled.

Einstein had promised his family that he would study on his own to get

into the local technical college, the Zurich Polytechnic. So he bought

all three volumes of Jules Violle's advanced physics text and copiously

noted his ideas in the margins. His work habits showed his ability to

concentrate, his sister recalled. "Even in a large, quite noisy group,

he could withdraw to the sofa, take pen and paper in hand, set the

inkstand precariously on the armrest, and lose himself so completely in

a problem that the conversation of many voices stimulated rather than

disturbed him."

That summer, at age 16, he wrote his first essay on theoretical physics,

which he titled "On the Investigation of the State of the Ether in a

Magnetic Field." The topic was important, for the notion of the ether

would play a critical role in Einstein's career. At the time, scientists

conceived of light simply as a wave, and so they assumed that the universe

must contain an all-pervasive yet unseen substance that was doing the

rippling and thus propagating the waves, just as water was the medium

rippling up and down and thus propagating the waves in an ocean. They

dubbed this the ether, and Einstein (at least for the time being) went

along with the assumption. As he put it in his essay, "An electric current

sets the surrounding ether in a kind of momentary motion."

The fourteen-paragraph handwritten paper echoed Violle's textbook as well

as some of the reports in the popular science magazines about Heinrich

Hertz's recent discoveries about electromagnetic waves. In it, Einstein

made suggestions for experiments that could explain "the magnetic field

formed around an electric current." This would be interesting, he argued,

"because the exploration of the elastic state of the ether in this case

would permit us a look into the enigmatic nature of electric current."

The high school dropout freely admitted that he was merely making a few

suggestions without knowing where they might lead. "As I was completely

lacking in materials that would have enabled me to delve into the subject

more deeply than by merely meditating about it, I beg you not to interpret

this circumstance as a mark of superficiality," he wrote.

He sent the paper to his uncle Caesar Koch, a merchant in Belgium, who was

one of his favorite relatives and occasionally a financial patron. "It is

rather naïve and imperfect, as might be expected from such a young

fellow like myself," Einstein confessed with a pretense of humility. He

added that his goal was to enroll the following fall at the Zurich

Polytechnic, but he was concerned that he was younger than the age

requirement. "I should be at least two years older."

To help him get around the age requirement, a family friend wrote to the

director of the Polytechnic, asking for an exception. The tone of the letter

can be gleaned from the director's response, which expressed skepticism

about admitting this "so-called 'child prodigy.' " Nevertheless, Einstein

was granted permission to take the entrance exam, and he boarded the train

for Zurich in October 1895 "with a sense of well-founded diffidence."

Not surprisingly, he easily passed the section of the exam in math and

science. But he failed to pass the general section, which included

sections on literature, French, zoology, botany, and politics. The

Polytechnic's head physics professor, Heinrich Weber, suggested that

Einstein stay in Zurich and audit his classes. Instead, Einstein

decided, on the advice of the college's director, to spend a year

preparing at the cantonal school in the village of Aarau, twenty-five

miles to the west.

It was a perfect school for Einstein. The teaching

was based on the philosophy of a Swiss educational reformer of the early

nineteenth century, Johann Heinrich Pestalozzi, who believed in

encouraging students to visualize images. He also thought it important

to nurture the "inner dignity" and individuality of each child. Students

should be allowed to reach their own conclusions, Pestalozzi preached,

by using a series of steps that began with hands-on observations and

then proceeded to intuitions, conceptual thinking, and visual imagery.

It was even possible to learn -- and truly understand -- the laws of

math and physics that way. Rote drills, memorization, and force-fed

facts were avoided.

Einstein loved Aarau. "Pupils were treated individually," his sister

recalled, "more emphasis was placed on independent thought than on

punditry, and young people saw the teacher not as a figure of authority,

but, alongside the student, a man of distinct personality." It was the

opposite of the German education that Einstein had hated. "When compared

to six years' schooling at a German authoritarian gymnasium," Einstein

later said, "it made me clearly realize how much superior an education

based on free action and personal responsibility is to one relying on

outward authority."

The visual understanding of concepts, as stressed by Pestalozzi and his

followers in Aarau, became a significant aspect of Einstein's genius.

"Visual understanding is the essential and only true means of teaching

how to judge things correctly," Pestalozzi wrote, and "the learning of

numbers and language must be definitely subordinated."

Not surprisingly, it was at this school that Einstein first engaged in

the visualized thought experiment that would help make him the greatest

scientific genius of his time: he tried to picture what it would be like

to ride alongside a light beam. "In Aarau I made my first rather childish

experiments in thinking that had a direct bearing on the Special Theory,"

he later told a friend. "If a person could run after a light wave with the

same speed as light, you would have a wave arrangement which could be

completely independent of time. Of course, such a thing is impossible."

This type of visualized thought experiments -- Gedankenexperiment

-- became a hallmark of Einstein's career. Over the years, he would picture

in his mind such things as lightning strikes and moving trains,

accelerating elevators and falling painters, two-dimensional blind beetles

crawling on curved branches, as well as a variety of contraptions designed

to pinpoint, at least in theory, the location and velocity of speeding

electrons.

While a student in Aarau, Einstein boarded with a wonderful family, the

Wintelers, whose members would long remain entwined in his life. There

was Jost Winteler, who taught history and Greek at the school; his wife,

Rosa, soon known to Einstein as Mamerl, or Mama; and their seven children.

Their daughter Marie would become Einstein's first girlfriend. Another

daughter, Anna, would marry Einstein's best friend, Michele Besso. And

their son Paul would marry Einstein's beloved sister, Maja.

"Papa" Jost Winteler was a liberal who shared Einstein's allergy

to German militarism and to nationalism in general. His edgy honesty and

political idealism helped to shape Einstein's social philosophy. Like

his mentor, Einstein would become a supporter of world federalism,

internationalism, pacifism, and democratic socialism, with a strong

devotion to individual liberty and freedom of expression.

More important, in the warm embrace of the Winteler family, Einstein became

more secure and personable. Even though he still fancied himself a

loner, the Wintelers helped him flower emotionally and open himself to

intimacy. "He had a great sense of humor and at times could laugh

heartily," recalled daughter Anna. In the evenings he would sometimes

study, "but more often he would sit with the family around the table."

Einstein had developed into a head-turning teenager who possessed, in

the words of one woman who knew him, "masculine good looks of the type

that played havoc at the turn of the century." He had wavy dark hair,

expressive eyes, a high forehead, and jaunty demeanor. "The lower half

of his face might have belonged to a sensualist who found plenty of

reasons to love life."

One of his schoolmates, Hans Byland, later wrote a striking description

of "the impudent Swabian" who made such a lasting impression. "Sure of

himself, his gray felt hat pushed back on his thick, black hair, he strode

energetically up and down in the rapid, I might say crazy, tempo of a

restless spirit which carries a whole world in itself. Nothing escaped the

sharp gaze of the large bright brown eyes. Whoever approached him was

captivated by his superior personality. A mocking curl of his fleshy mouth

with its protruding lower lip did not encourage Philistines to fraternize

with him."

Most notably, Byland added, young Einstein had a sassy, sometimes

intimidating wit. "He confronted the world spirit as a laughing

philosopher, and his witty sarcasm mercilessly castigated all vanity and

artificiality."

Einstein fell in love with Marie Winteler at the end of 1895, just a few

months after he moved in with her parents. She had just completed teacher

training college and was living at home while waiting to take a job in a

nearby village. She was just turning 18, he was still 16. The romance

thrilled both families. Albert and Marie sent New Year's greetings to

his mother; she replied warmly, "Your little letter, dear Miss Marie,

brought me immense joy."

The following April, when he was back home in Pavia for spring break,

Einstein wrote Marie his first known love letter:

Beloved sweetheart!

Many, many thanks sweetheart for your charming little letter, which made

me endlessly happy. It was so wonderful to be able to press to one's

heart such a bit of paper which two so dear little eyes have lovingly

beheld and on which the dainty little hands have charmingly glided back

and forth. I was now made to realize, my little angel, the meaning of

homesickness and pining. But love brings much happiness -- much more so

than pining brings pain...

My mother has also taken you to her heart, even though she does not know

you; I only let her read two of your charming little letters. And she

always laughs at me because I am no longer attracted to the girls who

were supposed to have enchanted me so much in the past. You mean more to

my soul than the whole world did before.

To which his mother penned a postscript: "Without having read this letter,

I send you cordial greetings!"

Although he enjoyed the school in Aarau, Einstein turned out to be an

uneven student. His admission report noted that he needed to do remedial

work in chemistry and had "great gaps" in his knowledge of French. By

midyear, he still was required to "continue with private lessons in French

& chemistry," and "the protest in French remains in effect." His father

was sanguine when Jost Winteler sent him the midyear report. "Not all its

parts fulfill my wishes and expectations," he wrote, "but with Albert I

got used to finding mediocre grades along with very good ones, and I am

therefore not disconsolate about them."

Music continued to be a passion. There were nine violinists in his class,

and their teacher noted that they suffered from "some stiffness in bowing

technique here and there." But Einstein was singled out for praise: "One

student, by the name of Einstein, even sparkled by rendering an adagio

from a Beethoven sonata with deep understanding." At a concert in the

local church, Einstein was chosen to play first violin in a piece by

Bach. His "enchanting tone and incomparable rhythm" awed the second

violinist, who asked, "Do you count the beats?" Einstein replied,

"Heavens no, it's in my blood."

His classmate Byland recalled Einstein playing a Mozart sonata with such

passion -- "What fire there was in his playing!" -- that it seemed like

hearing the composer for the first time. Listening to him, Byland realized

that Einstein's wisecracking, sarcastic exterior was a shell around a

softer inner soul. "He was one of those split personalities who know how

to protect, with a prickly exterior, the delicate realm of their intense

personal life."

Einstein's contempt for Germany's authoritarian schools and militarist

atmosphere made him want to renounce his citizenship in that country.

This was reinforced by Jost Winteler, who disdained all forms of

nationalism and instilled in Einstein the belief that people should

consider themselves citizens of the world. So he asked his father to

help him drop his German citizenship. The release came through in

January 1896, and for the time being he was stateless.

He also that year became a person without a religious affiliation. In

the application to renounce his German citizenship, his father had

written, presumably at Albert's request, "no religious denomination." It

was a statement Albert would also make when applying for Zurich residency

a few years later, and on various occasions over the ensuing two decades.

His rebellion from his childhood fling with ardent Judaism, coupled with

his feelings of detachment from Munich's Jews, had alienated him from his

heritage. "The religion of the fathers, as I encountered it in Munich

during religious instruction and in the synagogue, repelled rather than

attracted me," he later explained to a Jewish historian. "The Jewish

bourgeois circles that I came to know in my younger years, with their

affluence and lack of a sense of community, offered me nothing that

seemed to be of value."

Later in life, beginning with his exposure to virulent anti-Semitism in

the 1920s, Einstein would begin to reconnect with his Jewish identity.

"There is nothing in me that can be described as a 'Jewish faith,' " he

said, "however I am happy to be a member of the Jewish people." Later he

would make the same point in more colorful ways. "The Jew who abandons his

faith," he once said, "is in a similar position to a snail that abandons

his shell. He is still a snail."

His renunciation of Judaism in 1896 should, therefore, be seen not as a

clean break but as part of a lifelong evolution of his feelings about

his cultural identity. "At that time I would not even have understood

what leaving Judaism could possibly mean," he wrote a friend the year

before he died. "But I was fully aware of my Jewish origin, even though

the full significance of belonging to Jewry was not realized by me until

later."

Einstein ended his year at the Aarau school in a manner that would have

seemed impressive for anyone except one of history's great geniuses,

scoring the second highest grades in his class. (Alas, the name of the

boy who bested Einstein is lost to history.) On a 1 to 6 scale, with 6

being the highest, he scored a 5 or 6 in all of his science and math

courses as well as in history and Italian. His lowest grade was a 3, in

French.

That qualified him to take a series of exams, written and oral, that

would permit him, if he passed, to enter the Zurich Polytechnic. On his

German exam, he did a perfunctory outline of a Goethe play and scored a 5.

In math, he made a careless mistake, calling a number "imaginary" when he

meant "irrational," but still got a top grade. In physics, he arrived late

and left early, completing the two-hour test in an hour and fifteen

minutes; he got the top grade. Altogether, he ended up with a 5.5, the best

grade among the nine students taking the exams.

The one section on which he did poorly was French. But his three-paragraph

essay was, to those of us today, the most interesting part of all of his

exams. The topic was "Mes Projets d'avenir," my plans for the future.

Although the French was not memorable, the personal insights were:

If I am lucky and pass my exams, I will enroll in the Zurich Polytechnic.

I will stay there four years to study mathematics and physics. I suppose

I will become a teacher in these fields of science, opting for the

theoretical part of these sciences.

Here are the reasons that have led me to this plan. They are, most of

all, my personal talent for abstract and mathematical thinking...My

desires have also led me to the same decision. That is quite natural;

everybody desires to do that for which he has a talent. Besides, I am

attracted by the independence offered by the profession of science.

In the summer of 1896, the Einstein brothers' electrical business again

failed, this time because they bungled getting the necessary water rights

to build a hydroelectric system in Pavia. The partnership was dissolved

in a friendly fashion, and Jakob joined a large firm as an engineer. But

Hermann, whose optimism and pride tended to overwhelm any prudence,

insisted on opening yet another new dynamo business, this time in Milan.

Albert was so dubious of his father's prospects that he went to his

relatives and suggested that they not finance him again, but they did.

Hermann hoped that Albert would someday join him in the business, but

engineering held little appeal for him. "I was originally supposed to

become an engineer," he later wrote a friend, "but the thought of having

to expend my creative energy on things that make practical everyday life

even more refined, with a bleak capital gain as the goal, was unbearable

to me. Thinking for its own sake, like music!" And thus he headed off to

the Zurich Polytechnic.

Copyright © 2007 by Walter Isaacson



Continues...


Excerpted from Einstein by Walter Isaacson Copyright © 2007 by Walter Isaacson. Excerpted by permission.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Table of Contents


Acknowledgments     xv
Main Characters     xix
The Light-Beam Rider     1
Childhood, 1879-1896     8
The Zurich Polytechnic, 1896-1900     32
The Lovers, 1900-1904     50
The Miracle Year: Quanta and Molecules, 1905     90
Special Relativity, 1905     107
The Happiest Thought, 1906-1909     140
The Wandering Professor, 1909-1914     158
General Relativity, 1911-1915     189
Divorce, 1916-1919     225
Einstein's Universe, 1916-1919     249
Fame, 1919     263
The Wandering Zionist, 1920-1921     281
Nobel Laureate, 1921-1927     309
Unified Field Theories, 1923-1931     336
Turning Fifty, 1929-1931     357
Einstein's God     384
The Refugee, 1932-1933     394
America, 1933-1939     425
Quantum Entanglement, 1935     448
The Bomb, 1939-1945     471
One-Worlder, 1945-1948     487
Landmark, 1948-1953     508
Red Scare, 1951-1954     524
The End, 1955     535
Epilogue: Einstein's Brain and Einstein's Mind     544
Sources     553
Notes     565
Index     643
From the B&N Reads Blog

Customer Reviews