Dielectric Metamaterials: Fundamentals, Designs, and Applications

Dielectric Metamaterials: Fundamentals, Designs, and Applications

Dielectric Metamaterials: Fundamentals, Designs, and Applications

Dielectric Metamaterials: Fundamentals, Designs, and Applications

eBook

$182.99  $215.00 Save 15% Current price is $182.99, Original price is $215. You Save 15%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Dielectric Metamaterials: Fundamentals, Designs, and Applications links fundamental Mie scattering theory with the latest dielectric metamaterial research, providing a valuable reference for new and experienced researchers in the field. The book begins with a historical, evolving overview of Mie scattering theory. Next, the authors describe how to apply Mie theory to analytically solve the scattering of electromagnetic waves by subwavelength particles. Later chapters focus on Mie resonator-based metamaterials, starting with microwaves where particles are much smaller than the free space wavelengths.

In addition, several chapters focus on wave-front engineering using dielectric metasurfaces and the nonlinear optical effects, spontaneous emission manipulation, active devices, and 3D effective media using dielectric metamaterials.

  • Highlights a crucial link in fundamental Mie scattering theory with the latest dielectric metamaterial research spanning materials, design and applications
  • Includes coverage of wave-front engineering and 3D metamaterials
  • Provides computational codes for calculating and simulating Mie resonances

Product Details

ISBN-13: 9780081024041
Publisher: Elsevier Science
Publication date: 11/12/2019
Series: Woodhead Publishing Series in Electronic and Optical Materials
Sold by: Barnes & Noble
Format: eBook
Pages: 310
File size: 51 MB
Note: This product may take a few minutes to download.

About the Author

Dr. Igal Brener is a Senior Scientist at Sandia National Laboratories in Albuquerque, New Mexico. He has made pioneering contributions to semiconductor physics, terahertz science and technology, fiber telecommunications, metamaterials nanophotonics.
Dr. Sheng Liu is currently an Optical Engineer at Apple Inc. and was previously a Senior Member of Technical Staff at Sandia National Laboratories. Dr. Liu has years of technical expertise in the design and simulation of optical and photonic devices and systems.
Dr. Isabelle Staude is a Junior Professor at the Institute of Applied Physics and the Abbe Center of Photonics at Friedrich-Schiller-University Jena, where she leads a research group on functional photonic nanostructures.
Dr. Jason Valentine is an Associate Professor in the Mechanical Engineering Department at Vanderbilt University where his research focuses on nanoscale optics and materials, including dielectric metamaterials.
Dr. Christopher Holloway is a Research Engineer at the National Institute of Standards and Technology in Boulder, Colorado where he works on electromagnetic theory.

Table of Contents

1. Electromagnetic metamaterials and metasurfaces: historical overview, characterization, and the effect of length scales Christopher L. Holloway, Edward F. Kuester 2. Fundamentals of Mie scattering Manuel Nieto-Vesperinas 3. Control of scattering by isolated dielectric nanoantennas Ramon Paniagua-Dominguez, Boris Luk’yanchuk, Arseniy I. Kuznetsov 4. Controlling spontaneous emission with dielectric optical antennas Nicolas Bonod 5. Tailoring transmission and reflection with metasurfaces Sergey Kruk, Yuri Kivshar 6. Applications of wavefront control using nano-post based dielectric metasurfaces Andrei Faraon, Amir Arbabi, Seyedeh Mahsa Kamali, Ehsan Arbabi, Arka Majumdar 7. Tunable metasurfaces and metadevices Chengjun Zou, Isabelle Staude, Dragomir N. Neshev 8. Nonlinear and ultrafast effects Maxim Shcherbakov, Sheng Liu, Igal Brener, Andrey Fedyanin 9. Non-resonant dielectric metamaterials Alexander Sprafke, Jörg Schilling

What People are Saying About This

From the Publisher

Links Mie scattering theory to the latest research on dielectric metamaterials, including high-level device performance and applications

From the B&N Reads Blog

Customer Reviews