Diagram Genus, Generators, and Applications

In knot theory, diagrams of a given canonical genus can be described by means of a finite number of patterns ("generators"). Diagram Genus, Generators and Applications presents a self-contained account of the canonical genus: the genus of knot diagrams. The author explores recent research on the combinatorial theory of knots and supplies proofs for a number of theorems.

The book begins with an introduction to the origin of knot tables and the background details, including diagrams, surfaces, and invariants. It then derives a new description of generators using Hirasawa’s algorithm and extends this description to push the compilation of knot generators one genus further to complete their classification for genus 4. Subsequent chapters cover applications of the genus 4 classification, including the braid index, polynomial invariants, hyperbolic volume, and Vassiliev invariants. The final chapter presents further research related to generators, which helps readers see applications of generators in a broader context.

1133719697
Diagram Genus, Generators, and Applications

In knot theory, diagrams of a given canonical genus can be described by means of a finite number of patterns ("generators"). Diagram Genus, Generators and Applications presents a self-contained account of the canonical genus: the genus of knot diagrams. The author explores recent research on the combinatorial theory of knots and supplies proofs for a number of theorems.

The book begins with an introduction to the origin of knot tables and the background details, including diagrams, surfaces, and invariants. It then derives a new description of generators using Hirasawa’s algorithm and extends this description to push the compilation of knot generators one genus further to complete their classification for genus 4. Subsequent chapters cover applications of the genus 4 classification, including the braid index, polynomial invariants, hyperbolic volume, and Vassiliev invariants. The final chapter presents further research related to generators, which helps readers see applications of generators in a broader context.

50.49 In Stock
Diagram Genus, Generators, and Applications

Diagram Genus, Generators, and Applications

by Alexander Stoimenow
Diagram Genus, Generators, and Applications

Diagram Genus, Generators, and Applications

by Alexander Stoimenow

eBook

$50.49  $66.99 Save 25% Current price is $50.49, Original price is $66.99. You Save 25%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

In knot theory, diagrams of a given canonical genus can be described by means of a finite number of patterns ("generators"). Diagram Genus, Generators and Applications presents a self-contained account of the canonical genus: the genus of knot diagrams. The author explores recent research on the combinatorial theory of knots and supplies proofs for a number of theorems.

The book begins with an introduction to the origin of knot tables and the background details, including diagrams, surfaces, and invariants. It then derives a new description of generators using Hirasawa’s algorithm and extends this description to push the compilation of knot generators one genus further to complete their classification for genus 4. Subsequent chapters cover applications of the genus 4 classification, including the braid index, polynomial invariants, hyperbolic volume, and Vassiliev invariants. The final chapter presents further research related to generators, which helps readers see applications of generators in a broader context.


Product Details

ISBN-13: 9781315359984
Publisher: CRC Press
Publication date: 09/03/2018
Series: Chapman & Hall/CRC Monographs and Research Notes in Mathematics
Sold by: Barnes & Noble
Format: eBook
Pages: 192
File size: 3 MB

About the Author

Alexander Stoimenow is an assistant professor in the GIST College at the Gwangju Institute of Science and Technology. He was previously an assistant professor in the Department of Mathematics at Keimyung University, Daegu, South Korea. His research covers several areas of knot theory, with relations to combinatorics, number theory, and algebra. He earned a PhD from the Free University of Berlin.

Table of Contents

Introduction. Preliminaries. The Maximal Number of Generator Crossings and ~-Equivalance Classes. Generators of Genus 4. Unknot Diagrams, Non-Trivial Polynomials, and Achiral Knots. The Signature. Braid Index of Alternating Knots. Minimal String Bennequin Surfaces. The Alexander Polynomial of Alternating Knots. Outlook.

From the B&N Reads Blog

Customer Reviews