A Briefer History of Time

A Briefer History of Time

A Briefer History of Time

A Briefer History of Time

Paperback

$15.99 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Related collections and offers


Overview

ప్రపంచవ్యాప్త బెస్ట్] సెల్లర్] "ఎ బ్రీఫ్] హిస్టరీ ఆఫ్] టైమ్]" స్టీఫెన్] హాకింగ్] రచన, సైంటిఫిక్] రచనలలో ఒక మైలురాయి. అందుకు కారణం రచయిత మాట తీరు, ఎంచుకున్న అంశాలు పట్టి చదివించే రకం అన్నది మరొకటి. విశ్వం సృష్టిలో దేవుని పాత్ర, విశ్వం చరిత్ర, భవిష్యత్తు ఎవరికయినా ఆసక్తికరాలు. అయితే పుస్తకం ప్రచురణ తరువాత పాఠకులు, పుస్తకంలోని ముఖ్యమయిన అంశాలు అర్థంకావడం కష్టంగా ఉందని ప్రొఫెసర్] హాకింగ్]కు చెప్పారు. అది నిజం.అందుకే ఎ బ్రీఫర్] హిస్టరీ ఆఫ్ టైమ్] పుస్తకం వచ్చింది. రచయిత పుస్తకంలోని అంశాలను పాఠకులకు మరింత సులభంగా అందాలి అనుకున్నాడు. అట్లాగే ఇటీవలి వైజ్ఞానిక పరిశీలనలను అందులో చేర్చాలి అనుకున్నాడు.మాటవరుసకు మాత్రమే ఈ పుస్తకం అంతకు ముందు దానికన్నా సంక్షిప్తంగా ఉంది. కానీ వాస్తవానికి, మొదటి దానిలోని అంశాలను మరింత విస్తృతంగా మార్చింది. కేయాటిక్] బౌండరీ పరిస్థితుల వంటి గణితం అంశాలు ఇందులో లేవు. మరొక పక్క ఎక్కువ మందికి ఆసక్తికరంగా ఉండే సాపేక్షత, స్థలం వంపు, క్వాంటమ్] సిద్ధాంతం వంటి అంశాలు పుస్తకమంతటా చెదురుగా ఉండేవి. ఇక్కడ వాటిని పూర్తి అధ్యాయాల కింద విడివిడిగా వివరించారు. ప్రత్యేకంగా ఆసక్తి కలిగించే అంశాలు, స్ట్రింగ్] సిద్ధాంతం, ఏకీకృత సిద్ధాంతం గురించిన కొత్త పరిశోధనలు, బలాల గురించిన సిద్ధాంతంవంటి ఇటీవలి అంశాలు, విస్తారంగా వివరించే వీలు రచయితకు అందింది. మొదటి ఎడిషన్]లాగే, ఈ పుస్తకం మరింత ఎక్కువగా సైంటిస్ట్]లు కాని వారిని కూడా కాలం, స్థలం గురించిన చిత్రమయిన రహస్యాల అన్వేషణలో ముందుకు నడిపిస్తుంది.ఎ బ్రీఫర్] హిస్టరీ ఆఫ్] టైమ్], సైన్స్] సాహిత్యానికి సరికొత్త కలయికగా అందరినీ అలరిస్తుంది.

Product Details

ISBN-13: 9789355432742
Publisher: Manjul Publishing House Pvt Ltd
Publication date: 06/21/2023
Pages: 166
Product dimensions: 5.50(w) x 8.50(h) x 0.38(d)
Language: Telugu

About the Author

About The Author
Stephen Hawking was the Lucasian Professor of Mathematics at the University of Cambridge for thirty years and the recipient of numerous awards and honors including the Presidential Medal of Freedom. His books for the general reader include My Brief History, the classic A Brief History of Time, the essay collection Black Holes and Baby Universes, The Universe in a Nutshell, and, with Leonard Mlodinow, A Briefer History of Time and The Grand Design. Stephen Hawking died in 2018.

Physicist Leonard Mlodinow, his collaborator for this new edition, has taught at Cal Tech, written for Star Trek: The Next Generation, and is the author of Euclid’s Window and Feynman’s Rainbow and the coauthor of the children’s book series The Kids of Einstein Elementary.

Hometown:

Cambridge, England

Date of Birth:

January 8, 1942

Date of Death:

March 14, 2018

Place of Birth:

Oxford, England

Read an Excerpt

Chapter One


Thinking About the Universe

We live in a stragne and wonderful universe. Its age, size, violence, and beauty require extraordinary imagination to appreciate. The place we humans hold within this vast cosmos can seem pretty insignificant. And so we try to make sense of it all and to see how we fit in. Some decades ago, a well-known scientist (some say it was Bertrand Russell) gave a public lecture on astronomy. He described how the earth orbits around the sun and how the sun, in turn, orbits around the center of a vast collection of stars called our galaxy. At the end of the lecture, a little old lady at the back of the room got up and said: "What you have told us is rubbish. The world is really a flat plate supported on the back of a giant turtle." The scientist gave a superior smile before replying, "What is the turtle standing on?" "You're very clever, young man, very clever," said the old lady. "But it's turtles all the way down!"

Most people nowadays would find the picture of our universe as an infinite tower of turtles rather ridiculous. But why should we think we know better? Forget for a minute what you know-or think you know-about space. Then gaze upward at the night sky. What would you make of all those points of light? Are they tiny fires? It can be hard to imagine what they really are, for what they really are is far beyond our ordinary experience. If you are a regular stargazer, you have probably seen an elusive light hovering near the horizon at twilight. It is a planet, Mercury, but it is nothing like our own planet. A day on Mercury lasts for two-thirds of the planet's year. Its surface reaches temperatures of over 400 degrees Celsius when the sun is out, then falls to almost -200 degrees Celsius in the dead of night. Yet as different as Mercury is from our own planet, it is not nearly as hard to imagine as a typical star, which is a huge furnace that burns billions of pounds of matter each second and reaches temperatures of tens of millions of degrees at its core.

Another thing that is hard to imagine is how far away the planets and stars really are. The ancient Chinese built stone towers so they could have a closer look at the stars. It's natural to think the stars and planets are much closer than they really are-after all, in everyday life we have no experience of the huge distances of space. Those distances are so large that it doesn't even make sense to measure them in feet or miles, the way we measure most lengths. Instead we use the light-year, which is the distance light travels in a year. In one second, a beam of light will travel 186,000 miles, so a light-year is a very long distance. The nearest star, other than our sun, is called Proxima Centauri (also known as Alpha Centauri C), which is about four light-years away. That is so far that even with the fastest spaceship on the drawing boards today, a trip to it would take about ten thousand years.

Ancient people tried hard to understand the universe, but they hadn't yet developed our mathematics and science. Today we have powerful tools: mental tools such as mathematics and the scientific method, and technological tools like computers and telescopes. With the help of these tools, scientists have pieced together a lot of knowledge about space. But what do we really know about the universe, and how do we know it? Where did the universe come from? Where is it going? Did the universe have a beginning, and if so, what happened before then? What is the nature of time? Will it ever come to an end? Can we go backward in time? Recent breakthroughs in physics, made possible in part by new technology, suggest answers to some of these long-standing questions. Someday these answers may seem as obvious to us as the earth orbiting the sun-or perhaps as ridiculous as a tower of turtles. Only time (whatever that may be) will tell.

Chapter Two


Our Evolving Picture of the Universe 

ALTHOUGH AS LATE AS THE TIME of Christopher Columbus it was common to find people who thought the earth was flat (and you can even find a few such people today), we can trace the roots of modern astronomy back to the ancient Greeks. Around 340 B.C., the Greek philosopher Aristotle wrote a book called On the Heavens. In that book, Aristotle made good arguments for believing that the earth was a sphere rather than flat like a plate. 

One argument was based on eclipses of the moon. Aristotle realized that these eclipses were caused by the earth coming between the sun and the moon. When that happened, the earth would cast its shadow on the moon, causing the eclipse. Aristotle noticed that the earth's shadow was always round. This is what you would expect if the earth was a sphere, but not if it was a flat disk. If the earth were a flat disk, its shadow would be round only if the eclipse happened at a time when the sun was directly under the center of the disk. At other times the shadow would be elongated-in the shape of an ellipse (an ellipse is an elongated circle). 

The Greeks had another argument for the earth being round. If the earth were flat, you would expect a ship approaching from the horizon to appear first as a tiny, featureless dot. Then, as it sailed closer, you would gradually be able to make out more detail, such as its sails and hull. But that is not what happens. When a ship appears on the horizon, the first things you see are the ship's sails. Only later do you see its hull. The fact that a ship's masts, rising high above the hull, are the first part of the ship to poke up over the horizon is evidence that the earth is a ball. 

The Greeks also paid a lot of attention to the night sky. By Aristotle's time, people had for centuries been recording how the lights in the night sky moved. They noticed that although almost all of the thousands of lights they saw seemed to move together across the sky, five of them (not counting the moon) did not. They would sometimes wander off from a regular east-west path and then double back. These lights were named planets-the Greek word for "wanderer." The Greeks observed only five planets because five are all we can see with the naked eye: Mercury, Venus, Mars, Jupiter, and Saturn. Today we know why the planets take such unusual paths across the sky: though the stars hardly move at all in comparison to our solar system, the planets orbit the sun, so their motion in the night sky is much more complicated than the motion of the distant stars. 

Aristotle thought that the earth was stationary and that the sun, the moon, the planets, and the stars moved in circular orbits about the earth. He believed this because he felt, for mystical reasons, that the earth was the center of the universe and that circular motion was the most perfect. In the second century a.d. another Greek, Ptolemy, turned this idea into a complete model of the heavens. Ptolemy was passionate about his studies. "When I follow at my pleasure the serried multitude of the stars in their circular course," he wrote, "my feet no longer touch the earth." 

In Ptolemy's model, eight rotating spheres surrounded the earth. Each sphere was successively larger than the one before it, something like a Russian nesting doll. The earth was at the center of the spheres. What lay beyond the last sphere was never made very clear, but it certainly was not part of mankind's observable universe. Thus the outermost sphere was a kind of boundary, or container, for the universe. The stars occupied fixed positions on that sphere, so when it rotated, the stars stayed in the same positions relative to each other and rotated together, as a group, across the sky, just as we observe. The inner spheres carried the planets. These were not fixed to their respective spheres as the stars were, but moved upon their spheres in small circles called epicycles. As the planetary spheres rotated and the planets themselves moved upon their spheres, the paths they took relative to the earth were complex ones. In this way, Ptolemy was able to account for the fact that the observed paths of the planets were much more complicated than simple circles across the sky. 

Ptolemy's model provided a fairly accurate system for predicting the positions of heavenly bodies in the sky. But in order to predict these positions correctly, Ptolemy had to make an assumption that the moon followed a path that sometimes brought it twice as close to the earth as at other times. And that meant that the moon ought sometimes to appear twice as big as at other times! Ptolemy recognized this flaw, but nevertheless his model was generally, although not universally, accepted. It was adopted by the Christian church as the picture of the universe that was in accordance with scripture, for it had the great advantage that it left lots of room outside the sphere of fixed stars for heaven and hell.

Table of Contents


Acknowledgments     xi
Foreword     1
Thinking About the Universe     3
Our Evolving Picture of the Universe     6
The Nature of a Scientific Theory     13
Newton's Universe     19
Relativity     26
Curved Space     38
The Expanding Universe     50
The Big Bang, Black Holes, and the Evolution of the Universe     68
Quantum Gravity     86
Wormholes and Time Travel     104
The Forces of Nature and the Unification of Physics     117
Conclusion     138
Albert Einstein     143
Galileo Galilei     145
Isaac Newton     147
Glossary     149
Index     155
From the B&N Reads Blog

Customer Reviews