Astrocytes and Epilepsy

Epilepsy is a devastating group of neurological disorders characterized by periodic and unpredictable seizure activity in the brain. There is a critical need for new drugs and approaches given than at least one-third of all epilepsy patients are not made free of seizures by existing medications and become "medically refractory". Much of epilepsy research has focused on neuronal therapeutic targets, but current antiepileptic drugs often cause severe cognitive, developmental, and behavioral side effects. Recent findings indicate a critical contribution of astrocytes, star-shaped glial cells in the brain, to neuronal and network excitability and seizure activity. Furthermore, many important cellular and molecular changes occur in astrocytes in epileptic tissue in both humans and animal models of epilepsy. The goal of Astrocytes and Epilepsy is to comprehensively review exciting findings linking changes in astrocytes to functional changes responsible for epilepsy for the first time in book format. These insights into astrocyte contribution to seizure susceptibility indicate that astrocytes may represent an important new therapeutic target in the control of epilepsy.

Astrocytes and Epilepsy includes background explanatory text on astrocyte morphology and physiology, epilepsy models and syndromes, and evidence from both human tissue studies and animal models linking functional changes in astrocytes to epilepsy. Beautifully labelled diagrams are presented and relevant figures from the literature are reproduced to elucidate key findings and concepts in this rapidly emerging field. Astrocytes and Epilepsy is written for neuroscientists, epilepsy researchers, astrocyte investigators as well as neurologists and other specialists caring for patients with epilepsy.

  • Presents the first comprehensive book to synthesize historical and recent research on astrocytes and epilepsy into one coherent volume
  • Provides a great resource on the field of astrocyte biology and astrocyte-neuron interactions
  • Details potential therapeutic targets, including chapters on gap junctions, water and potassium channels, glutamate and adenosine metabolism, and inflammation
1133478469
Astrocytes and Epilepsy

Epilepsy is a devastating group of neurological disorders characterized by periodic and unpredictable seizure activity in the brain. There is a critical need for new drugs and approaches given than at least one-third of all epilepsy patients are not made free of seizures by existing medications and become "medically refractory". Much of epilepsy research has focused on neuronal therapeutic targets, but current antiepileptic drugs often cause severe cognitive, developmental, and behavioral side effects. Recent findings indicate a critical contribution of astrocytes, star-shaped glial cells in the brain, to neuronal and network excitability and seizure activity. Furthermore, many important cellular and molecular changes occur in astrocytes in epileptic tissue in both humans and animal models of epilepsy. The goal of Astrocytes and Epilepsy is to comprehensively review exciting findings linking changes in astrocytes to functional changes responsible for epilepsy for the first time in book format. These insights into astrocyte contribution to seizure susceptibility indicate that astrocytes may represent an important new therapeutic target in the control of epilepsy.

Astrocytes and Epilepsy includes background explanatory text on astrocyte morphology and physiology, epilepsy models and syndromes, and evidence from both human tissue studies and animal models linking functional changes in astrocytes to epilepsy. Beautifully labelled diagrams are presented and relevant figures from the literature are reproduced to elucidate key findings and concepts in this rapidly emerging field. Astrocytes and Epilepsy is written for neuroscientists, epilepsy researchers, astrocyte investigators as well as neurologists and other specialists caring for patients with epilepsy.

  • Presents the first comprehensive book to synthesize historical and recent research on astrocytes and epilepsy into one coherent volume
  • Provides a great resource on the field of astrocyte biology and astrocyte-neuron interactions
  • Details potential therapeutic targets, including chapters on gap junctions, water and potassium channels, glutamate and adenosine metabolism, and inflammation
93.99 In Stock
Astrocytes and Epilepsy

Astrocytes and Epilepsy

by Jacqueline A. Hubbard, Devin K. Binder
Astrocytes and Epilepsy

Astrocytes and Epilepsy

by Jacqueline A. Hubbard, Devin K. Binder

eBook

$93.99  $125.00 Save 25% Current price is $93.99, Original price is $125. You Save 25%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Epilepsy is a devastating group of neurological disorders characterized by periodic and unpredictable seizure activity in the brain. There is a critical need for new drugs and approaches given than at least one-third of all epilepsy patients are not made free of seizures by existing medications and become "medically refractory". Much of epilepsy research has focused on neuronal therapeutic targets, but current antiepileptic drugs often cause severe cognitive, developmental, and behavioral side effects. Recent findings indicate a critical contribution of astrocytes, star-shaped glial cells in the brain, to neuronal and network excitability and seizure activity. Furthermore, many important cellular and molecular changes occur in astrocytes in epileptic tissue in both humans and animal models of epilepsy. The goal of Astrocytes and Epilepsy is to comprehensively review exciting findings linking changes in astrocytes to functional changes responsible for epilepsy for the first time in book format. These insights into astrocyte contribution to seizure susceptibility indicate that astrocytes may represent an important new therapeutic target in the control of epilepsy.

Astrocytes and Epilepsy includes background explanatory text on astrocyte morphology and physiology, epilepsy models and syndromes, and evidence from both human tissue studies and animal models linking functional changes in astrocytes to epilepsy. Beautifully labelled diagrams are presented and relevant figures from the literature are reproduced to elucidate key findings and concepts in this rapidly emerging field. Astrocytes and Epilepsy is written for neuroscientists, epilepsy researchers, astrocyte investigators as well as neurologists and other specialists caring for patients with epilepsy.

  • Presents the first comprehensive book to synthesize historical and recent research on astrocytes and epilepsy into one coherent volume
  • Provides a great resource on the field of astrocyte biology and astrocyte-neuron interactions
  • Details potential therapeutic targets, including chapters on gap junctions, water and potassium channels, glutamate and adenosine metabolism, and inflammation

Product Details

ISBN-13: 9780128026243
Publisher: Elsevier Science
Publication date: 07/05/2016
Sold by: Barnes & Noble
Format: eBook
Pages: 394
File size: 25 MB
Note: This product may take a few minutes to download.

About the Author

Jacqueline A. Hubbard received her B.S. in biochemistry from the University of Vermont. Her M.S. and Ph.D. were both completed at the University of California, Riverside. She has been working in Devin Binder’s laboratory since 2011 and her research focuses on characterizing astrocytic changes in epilepsy. Specifically, she uses in vivo and in vitro techniques to characterize changes in aquaporin-4 (AQP4) and glutamate transporter 1 (GLT1) expression during epileptic pathogenesis that could ultimately be used to develop novel therapeutic strategies. She has presented her research at a number of national and international conferences and has co-authored a review article, a book chapter, and original research articles. She has also won awards for outstanding teaching, excellent presentations, as well as travel awards to attend international conferences.
Originally from the Bay Area, Devin K. Binder went to Harvard University as an undergraduate, where he studied biology, anthropology, and neuroscience. He was awarded the Hoopes Prize at Harvard for his summa cum laude senior honors thesis “Serotonin and behavioral state.” Deciding to pursue both neuroscience and clinical medicine, he enrolled in the M.D./Ph.D. program at Duke University. At Duke, he graduated 1st in his medical school class, and contributed to epilepsy neuroscience with his Ph.D. dissertation “The functional role of neurotrophins in the kindling model of epilepsy.” Subsequently, Binder completed a one-year internship in general surgery at the University of California, San Francisco, and a six-year residency in neurological surgery at UCSF. At UCSF, he did a one-year fellowship in the laboratory of Dr. Alan Verkman, leader in the field of aquaporin biology. Following residency, Binder was awarded the Van Wagenen neurosurgical fellowship for one year of neuroscience and neurosurgery at the University of Bonn. There, he did another fellowship in the laboratory of Dr. Christian Steinhäuser, Director of the Institute for Cellular Neuroscience at the University of Bonn. Following a three-year stint at the University of California, Irvine, in the Departments of Neurological Surgery and Anatomy&Neurobiology, Binder joined the Division of Biomedical Sciences at the University of California, Riverside School of Medicine in January 2010. Binder runs the NIH-funded Translational Neuroscience Laboratory, and conducts research on astrocytes, epilepsy, and neurophotonics. Binder has been publishing in the epilepsy field since the 1990s, and has publications since 2004 relevant to astrocyte contribution to seizures and epilepsy. He is the previous co-author of 3 books, 2 related to epilepsy, currently holds 2 NIH grants related to epilepsy, and sits on leadership committees of the American Epilepsy Society.

Table of Contents

1. History of astrocytes

2. Astrocytes in the mammalian brain

3. Gliotransmitters

4. Types of epilepsy

5. Neuropathology of human epilepsy

6. Astrocyte calcium signaling

7. Potassium channels

8. Water channels

9. Glutamate metabolism

10. Adenosine metabolism

11. Gap junctions

12. Blood-brain barrier disruption

13. Inflammation

14. Therapeutic targets and future directions

What People are Saying About This

From the Publisher

This book provides a comprehensive overview on the field of astrocyte biology and its role in epileptic brain tissue and potential as a therapeutic target, including sections on gap junctions, calcium signaling, and inflammation

From the B&N Reads Blog

Customer Reviews